
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

FRAMEWORK FOR MANAGING METADATA SECURITY
TAGS AS THE BASIS FOR MAKING SECURITY DECISIONS

by

Panagiotis Aposporis

December 2002

 Thesis Advisor: Ted G. Lewis
 Second Reader: Timothy E. Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collect ion of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704 -0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Framework for Managing Metadata Security
Tags as the Basis for Making Security Decisions.

6. AUTHOR(S) Aposporis, Panagiotis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis presents an analysis of a capability to employ CAPCO (Controlled Access Program Coordination

Office) compliant Metadata security tags as the basis for making security decisions. My research covers all the security
aspects of the related technologies, such as XML, Web Services, Java API’s for XML, .NET Architecture to help
determine how security conscious enterprises such as the Intelligence Community can implement this approach in the real
insecure world, with commercial off-the-self products, to meet their needs. There were many concerns about using the
XML Metadata Label Tags as the basis for making security decisions, due to an un -trusted environment. By using
appropriate trusted parts, when really necessary, and new technologies , we can find secure solutions for creating, storing
and disseminating XML documents.

Besides the theoretical research, this thesis also presents a prototype development of a Web Service that can
handle most of the tasks (save, save locally, review etc), which are required to securely manage XML documents. In order
to implement the above Web Service, open -source products, such as Java and Apache Tomcat Web Server, are used.
These are not only available free, easily testable and commonly used, but they pro vide us with a great interoperability
among almost all the platforms. The implementation can also be done by using other competitive technologies or
platforms or can even use similar or related commercial products.

15. NUMBER OF
PAGES

288

14. SUBJECT TERMS Metadata, Web Service, XML, XSL, DTD, Schema, SAX, Security
Policy, XML Editor, XML Parser, Validate, Security Attributes, Labels, Objects.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2 -89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FRAMEWORK FOR MANAGING METADATA SECURITY TAGS AS THE

BASIS FOR MAKING SECURITY DECISIONS

Panagiotis Aposporis
Major, Hellenic Air Force

B.S., Hellenic Air Force Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2002

Author: Aposporis Panagiotis

Approved by: Ted G. Lewis

Thesis Advisor

Timothy E. Levin
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis presents an analysis of a capability to employ CAPCO (Controlled

Access Program Coordination Office) compliant Metadata security tags as the basis for

making security decisions. My research covers all the security aspects of the related

technologies, such as XML, Web Services, Java API’s for XML, .NET Architecture to

help determine how security conscious enterprises such as the Intelligence Community

can implement this approach in the real insecure world, with commercial off -the-self

products, to meet their needs. There were many concerns about using the XML Metadata

Label Tags as the basis for making security decisions, due to an un-trusted environment.

By using appropriate trusted parts, when really necessary, and new technologies, we can

find secure solutions for creating, storing and disseminating XML documents.

Besides the theoretical research, this thesis also presents a prototype development

of a Web Service that can handle most of the tasks (save, save locally, review etc), which

are required to securely manage XML documents. In order to implement the above Web

Service, open-source products, such as Java and Apache Tomcat Web Server, are used.

These are not only available free, easily testable and commonly used, but they provide us

with a great interoperability among almost all the platforms. The implementation can also

be done by using other competitive technologies or platforms or can even use similar or

related commercial products.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. DEFINITION OF THE PROBLEM................................ 1
A. INTRODUCTION................................ 1

1. Background................................ 1
B. BRIEF OVERVIEW OF THE SAIC – IC XML WORKGROUP

FINAL REPORT 2
1. Content Manipulation 2
2. Content Storage 3
3. Content Delivery................................ 3
4. Conclusions................................ 4

C. DESCRIPTION OF THE PROBLEM AND A PROPOSED
APPROACH................................ 4

D. OUTLINE 9

II. CURRENT STATE OF SECURITY IN XML - METADATA 11
A. DEFINITION OF THE TERMS 11

1. XML, XSL and SCHEMA 11
2. Metadata................................ 12
3. SOAP and Web Services 14
4. CORBA................................ 15

B. SURVEY OF SECURITY ISSUES IN RELATED TEC HNOLOGIES
AND RESEARCH LITERATURE SURVEY 16
1. WS-Security 16
2. Microsoft’s .NET Framework Security 18

a. Introduction................................ 18
b. Code Access Security................................ 19
c. Role-based Security................................ 20

3. Java Security................................ 21
a. Introduction................................ 21
b. Basic Concepts................................ 22
c. New Enhancements of the Java 2 SDK............................ 23

4. COM & DCOM................................ 24
a. Introduction................................ 24
b. Security................................ 25

C. IC METADATA STANDARD FOR PUBLICATIONS 26

III. DBMS ARCHITECTURES. 29
A. OVERVIEW OF THE BASIC SECURE DBMS 29

1. Historical Background................................ 29
2. Woods Hole Architectures 30
3. Trusted Subject Architectures................................ 32

B. ANALYSIS AND REQUIREMENTS OF DBMS ARCHITECTURES .. 33
1. Basic Requirements................................ 33

 viii

2. XML and DBMS Architectures 35
C. RESEARCH ON RELATED DBMS PRODUCTS 38

1. Oracle 9i................................ 38
2. IBM DB2 Universal Database V7 40
3. Sybase Adaptive Server Enterprise (ASE) 12.5......................... 42

D. THREE-TIER ARCHITECTURE................................ 44

IV. IMPLEMENTATION................................ 47
A. SECURITY ARCHITECTUR E OF THE PROTOTYPE

DEVELOPMENT 47
1. Introduction 47
2. Security Policies................................ 49

B. STRUCTURE OF THE PROTOTYPE DEVELOPMENT................... 50
1. Main Idea................................ 50
2. Description of System’s Logic—Flow Diagrams........................ 50
3. Analysis of the Java Servlets 58

a. Login.class................................ 58
b. UserOptions.class 58
c. UserSelection.class 59
d. ImportToSave.class................................ 59
e. SaveFile.class................................ 59
f. UpdateDb.class................................ 61
g. OpenFile.class................................ 61
h. ImportFile.class................................ 62
i. FindUrl.class 62
j. Logout.class................................ 63

V. EXPERIMENTATION................................ 65
A. DEMONSTRATION SCENARIOS 65

1. Introduction 65
2. Scenario 1 – Internal User Stores a Document to the System 65
3. Scenario 2 – Internal User Retrieves a Document from the

System 68
4. Scenario 3 – External User Retrieves a Document from the

System 71
B. SUBJECTIVE PERFORMANCE EVALUATION.............................. 74
C. CONCLUSIONS - LESSONS LEARNED 75

APPENDIX A. APPLICATION PROGRAMMING INTERFACE (API) 77
Package dbsection 78
Hierarchy for Package dbsection 80

APPENDIX B. JAVA CODE................................175

LIST OF REFERENCES269

INITIAL DISTRIBUTION LIST................................273

 ix

LIST OF FIGURES

Figure 1. Basic Proposed Architecture................................ 6
Figure 2. Server Side Proposed Architecture................................ 7
Figure 3. Client Side................................ 8
Figure 4. WS Security Summary................................ 17
Figure 5. Kernelized DBMS 30
Figure 6. Distributed DBMS 31
Figure 7. Cryptographic Integrity Lock DBMS 32
Figure 8. Trusted Subject Architectures 33
Figure 9. Security Architecture................................ 47
Figure 10. Login Flow Diagram 51
Figure 11. Main Menu Flow Diagram 52
Figure 12. Save to Database Flow Diagram................................ 54
Figure 13. Open File Flow Diagram................................ 55
Figure 14. Open from External Database Flow Diagram................................ 56
Figure 15. Login Screen................................ 65
Figure 16. First Option in the Main Menu 66
Figure 17. Browse Local File System................................ 67
Figure 18. Uploading and Parsing File Process 67
Figure 19. Second Option in the Main Menu 68
Figure 20. Available Files to Open................................ 69
Figure 21. Choose an Editor Screen 69
Figure 22. XMLMind Editor Opened the File 70
Figure 23. Applet Based Editor Opened the File 71
Figure 24. Third Option in the Main Menu................................ 72
Figure 25. Choose an Associated Server Screen 72
Figure 26. Available Files on an Associated Server 73

 x

 THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

I would like to thank Dr. Cynthia Irvine for introducing me to the field of

computer security and for her professional guidance and direction during the entire length

of my studies at the Naval Postgraduate School. I would also like to thank my Thesis

advisors Ted Lewis and Tim Levin for their guidance, support and patience. Their

experience and expert knowledge inspired me to reach beyond my previous limits and

capabilities. I am also grateful to Ron Russell, my English editor, for his support, patient

and excellent corrections. In addition, I sincerely thank the Hellenic Air Force General

Staff for sponsoring me for this course and the entire faculty and staff at the Naval

Postgraduate School for helping me successfully completes the curriculum.

Last but certainly not least, I am indebted to my loving family, my lovely wife

Haroula, and my wonderful children, John and Dina, who provided me with unlimited

support and love during this research. Without their support, none of my

accomplishments would have been possible.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. DEFINITION OF THE PROBLEM

A. INTRODUCTION

1. Background

The eXtensible Markup Language (XML) is a text and data-formatting language

that has a tag-based syntax very similar to the Hyper Text Markup Language (HTML)

syntax, but much more capable and much more flexible. It not only prescribes text styles

but also defines data types for cross platform communication. XML documents contain

only data, so applications that process XML documents must decide how to display the

document’s data. For example a Personal Digital Assistant (PDA) may render an XML

document differently than a wireless phone or a desktop computer would render that

document.

XML permits document authors to create “markup” for virtually any type of

information. Markup is notation that provides information to an XML parser on how to

parse, or read, an XML document; which parts of a document to skip; and which parts of

a document to hand off to another application. Consequently, this extensibility enables

document authors to create entirely new markup languages for describing specific types

of data, including mathematical formulas, chemical molecular structures, music etc.

Based on that powerful capability, the Intelligence Community (IC) recently began

studying XML and its potential use as the main technology to create, manage and

disseminate intelligence’s content.

At the end of 1999 a Final Report [24] was prepared under the direction of the

Office of Advanced Analytical Tools (AAT) (Department of the Central Intelligence

Agency), by the Science Applications International Corporation Applied Content

Technologies Team (SAIC) for the IC XML Study Group. The purpose of that report was

to present the findings of the development of a prototype with

emphasis on the technical highlights, advantages, disadvantages

and shortfalls of utilizing XML for production, storage and

dissemination of intelligence data. Additionally it provides

2

recommendations for utilizing XML technology in the Intelligence

Community.

The findings of that report as concerns the applicability of the XML to the

Intelligence’s Community documents were encouraging and highly promising for the

future. More specifically, the XML was found well suited for creating, managing and

disseminating the intelligence content. XML provides several solutions to the form of

authoring, manages highly granular level data from many different sources, and finally

enables the dissemination of user specific views and of data based on target security

domain. Even though this report was published about three years ago and much has

changed in the related technologies, it contains many concepts worthy of mentioning and

analyzing.

B. BRIEF OVERVIEW OF THE SAIC – IC XML WORKGROUP FINAL
REPORT

1. Content Manipulation

The proposed Content Manipulation in the IC XML Workgroup Final Report [24]

has two distinct sub-functions: the authoring environment, and the comment/review

process. In the authoring environment, the analyst can use an XML editor to crea te an

XML document based on the rules in a Document Type Definition (DTD). This DTD

provides the structure and the business rules that must be followed as the XML content is

created. The interactive parser is responsible for validating the XML instances cr eated in

this environment and to provide a valid XML document. There is also a potential use of a

non-XML editor, which can create “structured” documents, using formatting styles from

templates that are generated from the DTD. Due to the large number of po werful, and in

most cases, free XML editors that have been developed, non-XML editors will not be

analyzed further in this document. The main feature that the XML Editor can provide is

that it can interface with the dissemination/delivery environment by serving as an on-call

editor that can be called directly from a web browser.

In the second function, which was called the “comment/review process,” a

potential reviewer outside the authoring environment can access, review and comment on

the content of an XML document. It was also suggested that the process be done via a

web browser, not only the whole document but its fragments, and the comments of the

3

reviewer be stored as custom attributes and maintained in the content repository, separate

from the original document, which allows many reviewers to provide comments without

altering the original document.

2. Content Storage

The content storage mechanism is separated into three functional areas: a) the

content management system, b) a content repository and c) all other internal and external

sources. The content management system must enable general document management

capabilities, such as security, access control, check in/out and version control history. In

addition, this system will provide the interface through which the XML editor accesses

the repository, and the users manage and reuse the document components. The system

also controls the access to documents in the repository for services such as

comment/review and modifying documents.

The main component of the content storage is an object-oriented database, which

is controlled by the management system. An object-oriented database is preferred as it is

better suited for hierarchical structures, such as those typically produced by XML. This

content repository is used to house the XML content at a very granular level while

allowing for check-in, checkout and versioning of the content. It is also very

advantageous for that object-oriented database to be able to connect to other data sources,

especially relational databases.

3. Content Delivery

The content delivery functional area consists of three basic parts:

§ domain filtering,

§ internal user functions, and

§ external user functions.

The production management, staff and the authors or analysts are the internal users who

create and distribute the intelligence documents stored in the content repository. Anyone

else who is outside the production environment and who does not contribute directly to

the production of the distributed content is the external user. External user functions

include search and retrieval of distributed content and external repositories and the

capability to capture distributed content locally.

4

The main part of the content delivery is the domain filter, which consists of

scripting filters designed to separate XML instances into various versions based on

security classification metadata. When an XML document is exported from the database,

the data is processed through the appropriate filter and distributed accordingly.

For both internal and external users, the necessary functions are provided through

a Web browser interface of various pages that are based on user profiles and security

access privileges. When the IC XML Study Group published their report the XML was a

new work in progress and so the technologies to develop, distribute and browse XML

contents was limited. Consequently, the authors were forced to transform the XML

documents into HTML using XSL style sheets and to send them as styled HTML to the

end user.

4. Conclusions

Clearly, security will always be a major factor in the IC, currently and in future

environments. The IC XML Study Group report correctly concluded that nothing in XML

inherently prohibits its use in the current security environment. Moreover, it also has a

great capability to attach security attributes to granular elements. This capability is much

more powerful than those in HTML documents. In addition, if the security markings are

stored as attributes rather than actual content, then changing markings guides is only a

matter of changing style sheets rather than content. Security markings are a great example

of why XML is better than HTML for storage of intelligence content.

Generally speaking, XML shows great applicability by providing a vendor -

neutral, non-proprietary format for exchanging content, which enables better

communications among the members of the IC and strives for better interoperability with

its customers.

C. DESCRIPTION OF THE PROBLEM AND A PROPOSED APPROACH

Among the main goals of the prototype that the IC XML Study Group’s report

was trying to achieve was to suggest a combination of

the latest and best commercial-off-the-self XML technology and

explore and develop this technology into a system that allows users

5

to author, store and disseminate disparate types of data in XML

format.

Some of the “latest and best” products of that period were examined and some

testing was done mainly trying to prove that all could work together and could provide

the desired results. Even though each of those products was really among the best of all

the others within the same functional family, many problems and difficulties existed

when they had to cooperate with each other. Furthermore, the XML technology was not

very mature and fully developed at that period. This made their job much more difficult

because everything had to be converted to HTML in order to be processed and delivered.

Besides the above functional and operational factors, another major problem was

the lack of security of the whole process because most of the ele ments used or proposed

were commercial non-open source products. In addition, there were security concerns

regarding the XML documents themselves during their storage or dissemination as well

as when the system must decide if a document is releasable to a user and to what extent

(the entire document or just paragraphs). There is of course a general reference for those

“domain filters” that must “separate XML instances into various versions based on

security classification metadata.” There is also a general reference for these functions

(comment/review, print save locally) that must be provided through a Web browser

interface, but the report also states “the current status of XML as a work in progress, the

software support to develop, distribute and browse XML content is limited.”

Recently much has changed, so the new technologies can work in a distributed

environment with the maximum interoperability. One of the major changes was the XML

technology, which became more mature and every day more and more vendor s and

developers chose it as the base of their applications. Moreover, the XML is integrated and

is improved in a new technology called XML Web Services. The real power of the XML

Web Services is that it lets applications share data and invoke capabilities from other

applications without regard to how those applications were built. XML is also

independent and can work with any operating system or platform they run on and any

devices are used to access them. While XML Web Services remain independent of each

6

other, they can loosely link themselves into a collaborating group that performs a

particular task.

The approach proposed in this thesis is to use a Web Service as the manager,

which uses the enormous capabilities of the XML in conjunction with its Metad ata Label

ags as the base to make the required security decisions. In that way, we obtain all the

advantages of the XML and the Web Services as well as maintaining the existing systems

or applications due to the fact that both XML and Web Services are comp letely

independent of the other parts of the entire system. There is a serious security concern for

those Metadata Label Tags and how they can be trusted in the real world’s insecure

Internet environment. By using some of the widely used secure solutions (like SSL, TCB,

DBMS), we can build a fully functional, interoperable and virtually secure system for use

by any large-scale enterprise. The proposed architecture is shown in Figure 1.

Figure 1. Basic Proposed Architecture

The main idea, as shown in Figure 1, consists of a number of enclaves, which are

interconnected through the Internet using any of the common protocols, such as Hyper

Text Transfer Protocol (HTTP) or its secure version (HTTPS). Over the HTTP or

HTTPS a relatively new protocol, called Simple Object Access Protocol (SOAP) is

running, which can be roughly described as a combination of HTTP, XML and the

Remote Procedure Calls (RPC). Any of the usual technologies that have been used so far,

Enclave B

Enclave D
Enclave C

Enclave A

7

for authorization and authentication, between the enclaves can be used without affecting

the main logic or operation of the system.

In every enclave, the XML Web Service is running on a dedicated Web Server,

which of course can be any of the common commercial ones or a modified open -source

server. The main tasks of this Web Service can be divided into three main categories. The

first one is the Authentication and Authorization of a potential client, which can also be a

single user or another Web Service, running on a Web Server in one of the interconnected

enclaves. The second category consists of the tasks that the system must perform when

the client wants to work on an XML document that is stored in its local database. That

means a direct communication with the local Database Management System (DBMS)

must be established so the desired documents are accessible. The last category includes

all the tasks that must be performed when the client wants to access an XML document

that is stored outside of its own database. In that category, a connection with the

appropriate Web Service in the specific server of the enclave must be established, using

the protocols mentioned before.

Figure 2. Server Side Proposed Architecture

The most common solution to interface with the Web Service is by using any

browser. Since most people are familiar with browsers nowadays, no special training is

required. Interaction between the user and the system is done through appropriate pages

that are generated dynamically by the Web Service according to the user’s choices and

the enforced policy. Since no special features from the browser are needed, a commercial

off-the-self product can be used or a “hand-made” open source instance can also be used.

8

When the user, via a Web browser, accesses an XML document, an XML Editor must be

used to handle the document itself. This system has enormous flexibility and

interoperability because the user’s choice of editor has no restrictions and can be either a

commercial off-the-self product or an open source. For content creating tasks, the editor

may also parse and check each document to determine if it is valid according to the

Intelligence’s Community XML DTD (Document Type Definition) for Security

Markings. The same checking is also done on the server side before data is accepted.

Recently that DTD has under gone a complete change and has been renamed “DED (Data

Element Dictionary) for the IC security attributes.” An overview of that DED can be

found in the following chapters of this paper.

Figure 3. Client Side

A Web Service can be written in any of the common languages (e.g. Java, C++,

Visual Basic) by utilizing any of the new technologies, such as the Microsoft’s “. NET”

framework, or the Sun’s Java WSDP (Web Service Development Package). When there

is a need for a high assurance system, which also has to be expandable and interoperable,

using technologies that are open source is preferable so that they can be tested and their

security can be verified either by using formal or non -formal methods. For that reason,

Sun’s Java WSDP has an advantage over other t echnologies and has already been used by

other major vendors (IBM, Oracle) as the base for their applications or development

tools.

In my implementation, Sun’s Java WSDP is used as the framework to implement

the Web Service because Java APIs for XML allow us to write our applications entirely

1. Browser
2XML Editor Connected to the Server of Its

Own Agent

9

in the Java programming language, thus taking advantage of the large number of the

features this language provides. Besides being an open source free technology, the most

important features of the Java APIs for XML ar e that they all support industry standards,

thus ensuring interoperability. Various network interoperability standards groups, such as

the World Wide Web Consortium (W3C) and the Organization for the Advancement of

Structured Information Standards (OASIS) have defined standards so that businesses that

follow these standards can make their data and applications complementary.

Another feature of the Java APIs for XML is that they allow a great deal of

flexibility. Users have flexibility in how they use the AP Is. For example, JAXP (Java API

for XML Processing) code can use various tools for processing an XML document, and

JAXM (Java API for XML Messaging) code can use various messaging protocols on top

of SOAP. Implementers have flexibility as well. The Java AP Is for XML define strict

compatibility requirements to ensure that all implementations deliver the standard

functionality, but they also give developers a great deal of freedom to provide

implementations tailored to specific uses like those for the Intelligence Community.

D. OUTLINE

The remainder of this paper is organized as follows. Chapter II. “Current State of

Security in XML – Metadata” describes the terms and the current state of the security in

many of the new technologies as well as the main points of the IC Metadata Standards for

Publications. Chapter III “Metadata DBMS Architectures” refers to the basic secure

architectures, to a proposed architecture appropriate for metadata, and to the concepts that

have already been implemented by some of the most specialized vendors. In Chapter IV

“Implementation (Prototype Development)” a review of the 3-tier architecture is made, as

well as a complete analysis of the Java classes being used, along with their relations.

Chapter V, “Experimentation,” concerns the testing of the system with different cases and

also describes the lessons learned and future work that could be done. Finally Appendix I,

completely documents the classes used as the official “javadoc” tool of the Java

programming Language produces and Appendix II presents a complete listing of the

code.

10

11

II. CURRENT STATE OF SECURITY IN XML - METADATA

A. DEFINITION OF THE TERMS

1. XML, XSL and SCHEMA

XML is a subset of the Standard Generalized Markup Language (SGML) defined

in ISO standard 8879:1986 that is designed to make it easy to interchange structured

documents over the Internet. XML files always clearly mark the beginning and end of

each of the elements of an interchanged document. XML restricts the use of the SGML

constructs to ensure that fallback options are available when access to certain components

of the document are not currently possible over the Internet. With XML, we can use any

tags we want, and the browser does not automatically understand the meaning of these

tags. For example the tag <body> could mean an HTML text body or perhaps the human

body in a medical article. Because of the nature of XML, no standard way to display an

XML document exists.

In order to display XML documents, having a mechanism to describe ho w the

document should be displayed is necessary. One of these mechanisms is Cascading Style

Sheets (CSS), but the eXtensible Stylesheet Language (XSL) is the preferred style sheet

language of XML. In addition XSL is far more sophisticated than the CSS used by

HTML. XSL consists of two parts, a method for transforming XML documents and a

method for formatting XML documents. As an example, we can think of XSL as a

language that can transform XML into HTML, a language that can filter and sort XML

data, and a language that can format XML data, based on the data value, like displaying

negative numbers in red. XSL can be used to define how an XML file should be

displayed by transforming the XML file into a format that is recognizable to a browser.

Normally XSL does this by transforming each XML element into an HTML element

because HTML is a browser recognizable format. XSL can also add completely new

elements into the output file, or can remove elements. It can rearrange and sort the

elements and test and make decisions about which elements to display, and a lot more.

An XML document optionally can reference another document that defines that

XML document’s structure. This referenced document is either a Document Type

12

Definition (DTD) or a Schema. A DTD expresses the set of rules for the document

structure using an Extended Backus-Naur Form (EBNF) grammar. Unlike DTDs,

Schemas do not use EBNF grammar. Instead they use XML syntax and are actually XML

documents that programs can manipulate like other XML documents. Sc hemas are more

flexible and more powerful than DTDs, and many researchers in the XML community

believe that Schemas will prevail over DTDs. When an XML document references a

DTD or Schema, some parsers, which are also called validating parsers, can read th e

DTD or the Schema and check the XML document according to the structure that the

DTD or Schema defines. If the XML document conforms to the DTD/Schema, then the

XML document is “valid.” Those parsers that cannot check for document conformity

against DTD/Schemas are called non-validating parsers. If an XML document can be

processed successfully by a validating or a non -validating parser, which means that the

document is syntactically correct, then that document is called “well formed.” By

definition, a valid XML document is also well formed.

2. Metadata

A common short definition of metadata is that it is “data about data.” Actually,

metadata can be data about almost anything. What makes it metadata is its purpose and

usage rather than its content or structure. Most often, metadata is designed to support

people or programs in locating and retrieving information resources. A piece of data can

be metadata to one application, and just data to another. Metadata is relatively short, has a

simple structure, and is so familiar that one may not realize that he or she uses metadata

every day. The most common example is when using a collection of tapes or CDs. If all

of them were in blank boxes, and one had to play each of them to see what was recorder

on it, then finding a particular film or track would be a long and difficult job. However, if

one places a label with the name of the tape or the CD and a list of the songs on each of

them, then picking out the right one immediately becomes very much easier. Extending

this example to a large library or the World Wide Web, the problem of finding exactly

what you are looking for is clearly enormous, but the basic concept of the solution

remains the same. Make some simple, relevant, searchable information available,

together with location information, and searching and retrieval becomes much easier.

13

Unfortunately, when the information pool is very large, a large number of relevant results

can be found, which must be filtered and ranked according to the specific user’s needs.

XML metadata can take many different forms. It may be embedded in an XML

document alongside the information it is about, or it may be held in a separate XML

document. In the second case the XML metadata could identify which information it is

about by using, for example, a Unified Resource Identifier (URI). In order to understand

better the breadth of metadata some examples of different kinds are presented below:

Ø Annotation: These are side notes added to a document for a specific

purpose, and they will be read by some or by all of the readers but at

different times and for different purposes.

Ø Cataloguing and Identification: In this kind of metadata there is an

association between specific properties and their values with whatever the

metadata is about. For example, a music store catalogue record for a music

CD, gives its title, singer and publisher. In XML applications, this

metadata is usually information about the properties of information

resources, leading to the general name “resource based metadata.”

Ø Subject Indexes: This refers to metadata that represents subjects and their

interrelationships, and also usually designates specific information

resources as belonging to these subjects. A closely related kind of

metadata is the already mentioned example with the tapes and CDs. Those

kinds of metadata are usually referred to as “subject based metadata.”

Ø Cross-references: These are an important kind of metadata for long-lived

collections of documents where documents are often cross-referenced in

ways their original authors did not foresee. In complex independent

collections, such as legal codes and cases, cross -references become

structural mapping.

In practice, most technologies include aspects of both resource based and subject

based metadata. This is partly bec ause if you want to represent a subject inside a

computer, you will probably end up doing so either by identifying the subject with an

14

information resource such as a thesaurus entry or by using a name for the subject as a

value of a property. In the music store example, the catalogue record can also give extra

information for each song contained in it. Moreover, if you have many resources with

properties, you will want to control and structure which properties are used, how they

relate to each other, and which of them will take on a life of their own.

3. SOAP and Web Services

SOAP stands for the Simple Object Access Protocol. SOAP is based on XML and

describes a messaging format for machine-to-machine communication. SOAP provides a

simple and lightweight mec hanism for exchanging structured and typed information

between peers in a decentralized, distributed environment using XML. SOAP does not

itself define any application semantics, such as a programming model or implementation

specific semantics; rather it defines a simple mechanism for expressing application

semantics by providing a modular packaging model and encoding mechanisms for

encoding data within modules. This allows SOAP to be used in a large variety of systems

ranging from messaging systems to Remote Procedures Call (RPC). SOAP consists of

three parts: a) the SOAP envelope construct defines an overall framework for expressing

what is in a message, who should deal with it, and whether it is optional or mandatory, b)

the SOAP encoding rules define a serialization mechanism that can be used to exchange

instances of application-defined data types, and c) the SOAP RPC representation defines

a convention that can be used to represent remote procedure calls and responses.

Although these parts are described together as part of SOAP, they are functionally

orthogonal. In particular, the envelope and the encoding rules are defined in different

namespaces in order to promote simplicity through modularity.

Web services, as their name implies, are application services offered via the Web.

In a typical Web services scenario, a business application sends a request to a service at a

given URL using the SOAP protocol over HTTP. The service receives the request,

processes it, and returns a response. One of the most common examples is that of a stock

quote service, in which the request asks for the current price of a specified stock, and the

response gives the stock price. This is one of the simplest forms of a Web service in that

the request is filled almost immediately, with the request and response being parts of the

same method call. Web services and consumers of Web services are typically businesses,

15

making Web services predominantly business-to-business (B-to-B) transactions.

Although .NET and other initiatives are designed to provide server-resident applications

to user clients, an enterprise can be the provider of Web services and also the consumer

of other Web services.

4. CORBA

CORBA, or Common Object Request Broker Architecture, is a standard

architecture for distributed object systems developed by the Object Management Group

(OMG) consortium. The OMG is responsible for defining CORBA. The OMG comprises

over 700 companies and organizations, including almost all the major vendors and

developers of distributed object technology, including platform, database, and application

vendors as well as software tool and corporate developers. CORBA allows a distributed,

heterogeneous collection of objects to interoperate. The basic CORBA paradigm is a

request for services of a distributed object. Everything else defined by the OMG is in

terms of this basic paradigm. The services that an object provides are given by its

interface. Interfaces are defined in OMG's Interface Definition Language (IDL).

Distributed objects are identified by object references, which are typed by IDL interfaces.

The Object Request Broker (ORB) is the distributed service that implements the

request to the remote object. It locates the remote object on the network, communicates

the request to the object, waits for the results, and when available communicates those

results back to the client. The client and the CORBA object regardless of where the

object is located use exactly the same request mechanism. It might be in the same process

with the client, somewhere in the same network enterprise or in another country. There is

no difference for the client and the architecture in total. Furthermore, the client issuing

the request can be written in a different programming language from the implementation

of the CORBA object. The ORB does the necessary translation between programming

languages. Language bindings are defined for all popular programming languages.

In conclusion, we can say that CORBA objects differ from typical programming

language objects in three main ways: a) they can be located anywhere on a network b)

they can interoperate with objects written on other platforms, and c) they can be written

in any programming language (Java, C++, COBOL, etc) for which there is a mapping

from IDL to that language.

16

B. SURVEY OF SECURITY ISSUES IN RELATED TECHNOLOGIES AND
RESEARCH LITERATURE SURVEY

1. WS-Security

Many experts agree that Web Services (WS) lack of security standards is one of

the major factors that has slowed the widespread acceptance and implementation of Web

Services. As a consequence of this opinion, in April 2002, IBM, Microsoft, and VeriSign

published a new Web Services security specification, WS-Security. The specification

aims to help enterprises build secure Web Services and applications based on them that

are broadly interoperable. Eventually, this specification would be submitted for

consideration as a standard, and looking at the amount of commitment that IBM,

Microsoft, and VeriSign have invested in it, it may soon go that way. This specific ation

proposes a standard set of SOAP extensions that can be used when building secure Web

Services to implement integrity and confidentiality.

WS-Security supports, integrates, and unifies several popular security models,

mechanisms, and technologies. Th is allows a wide array of existing systems to

interoperate in a platform- and language-neutral manner in the context of present day

Web Services. It also defines a standard set of SOAP extensions. These message headers

can be used to implement integrity and confidentiality in Web Services applications. This

specification also provides standard mechanisms for Web Services applications to

exchange secure, signed messages. Another important factor of WS -Security is that it is a

solid, open-standards -based security model and hence will be developed rapidly.

Microsoft and IBM have produced a road map outlining several Web Services

security specifications, which is available at http://www-

106.ibm.com/developerworks/security/library/ws -secmap/. This road map is based on a

radical approach to security and defines additional, related Web Services security

capabilities within the framework established by the WS-Security specification. By using

this framework, enterprises can incorporate the new specifications, as need ed, into the

different levels of their Web Services applications. The other proposed specifications

include WS-Policy, WS-Trust, WS-Privacy, WS-Secure Conversation, WS-Federation,

and WS-Authorization. A summary with a brief description of all the above

specifications is shown in the Table 1.

17

Specification Description

WS-Security Describes how to attach signature and encryption

headers to SOAP messages. In addition, it describes

how to attach security tokens, including binary

security tokens such as X.509 certificates and

Kerberos tickets, to messages.

WS-Policy Describes the capabilities and constraints of the

security (and other business) policies on

intermediaries and endpoints (e.g. required security

tokens, supported encryption algorithms, privacy

rules).

WS-Trust Describes a framework for trust models that enables

Web services to interoperate securely.

WS-Privacy Describes a model for how Web services and

requesters state subject privacy preferences and

organizational privacy practice statements..

WS-

SecureConversation

Describes how to manage and authenticate message

exchanges between parties including security context

exchange and to establish and derive session keys.

WS-Federation Describes how to manage and broker the trust

relationships in a heterogeneous federated

environment including support for federated

identities.

WS-Authorization Describes how to manage authorization data and

authorization policies.

Figure 4. WS Security Summary

Among the main advantages of WS Security is that it is the most comprehensive

and elaborate attempt to add security to Web Services. It insulates development teams

from the low level specific details of the technologies involved in implementing security.

18

It also facilitates a rapid change of implementation between t echnologies without

disturbing the existing interfaces between systems. WS-Security is flexible and is

designed to be used as the basis for the construction of a wide variety of security models

including PKI, Kerberos, and SSL. Specifically, WS-Security supports multiple security

tokens, trust domains, signature formats, and encryption technologies. WS -Security is a

building block that can be used in conjunction with other Web Services extensions and

higher-level application-specific protocols to accommodate a wide variety of security

models and encryption technologies.

2. Microsoft’s .NET Framework Security
a. Introduction

Microsoft’s .NET Framework provides a rich security system, capable of

confining code to run in tightly constrained, administrator-defined security contexts. In

many of the existing security models, security attributes are assigned to either users and

their groups or both. This means that users, and all code run on behalf of these users, are

either permitted or not permitted to perform operations on critical resources. This is a

common security model in most operating systems. The .NET Framework provides, in a

similar way, a security model called role -based security that can be defined by the

developer. Another feature that the .NET Framew ork can also provide is security on

code. This is referred to as code access security or sometimes as evidence-based security.

With code access security, a user may be trusted to access a resource, but if the code the

user executes is not trusted, then acc ess to the resource will be denied. Security based on

code, as opposed to specific users, is a fundamental facility to permit security to be

expressed on mobile code. Mobile code may be downloaded and executed by any number

of users all of which are unknow n at development time. The .NET Framework security

system functions over the traditional operating system’s security, adding a second more

expressive and extensible level to operating system security. Both layers complement

each other and sometimes the operating system security system can delegate some

responsibility to the common language runtime security system for managed code. This is

a powerful capability as the runtime security system is finer grain and more configurable

than traditional operating sys tem security.

19

b. Code Access Security

Code access security assigns permissions to assemblies based on assembly

evidence. Code access security uses the location from which executable code is obtained

and other information about the identity of code as a primary factor in determining what

resources the code should have access to. This information about the identity of an

assembly is called evidence. Whenever an assembly is loaded into the runtime for

execution, the hosting environment attaches a number of p ieces of evidence to the

assembly. It is the responsibility of the code access security system in the runtime to map

this evidence into a set of permissions, which will determine what access this code has to

a number of resources, such as the registry or the file system. The default code access

security policy has been designed to be as secure as it can be, for most application

scenarios of managed code. There are many limitations regarding what non -trusted code

from the Internet or local intranet is capable of doing when executed on the local

machine. The code access security default policy model thus represents a conservative

approach to security, so administrators need to take explicit action to make the system

less secure. The Code Access Security is foc used on three core abstractions: permissions,

evidence, and policies. The security abstractions for role -based security and code access

security are represented as types in the .NET Framework Class Library and are user -

extendable.

Permissions represent authorization to perform a protected operation.

These operations often involve access to a specific resource. In general, the operation can

involve accessing resources such as files, the registry, the network, the user interface, or

the execution environment . An example of a permission that does not involve a tangible

resource is the ability to skip verification. Based on the evidence presented to the security

system at assembly load time, the security system grants a permission set that represents

authority to access various protected resources. Conversely, resources are protected by a

permission demand that triggers a security check to see that a specific permission has

been granted to all callers of the resource; if the demand fails, an exception is raised.

Whenever an assembly is loaded into the runtime, the hosting environment

presents the security system with evidence for the assembly. Evidence constitutes the

input to the code access security policy system that determines what permissions an

20

assembly may receive. Many of the classes that ship with the .NET Framework, such as

Zone, URL, Hash, Site, Application Directory, are used as standard forms of evidence in

the security system. The procedure of determining the actual set of granted permissions

to an assembly has three main parts:

A. Individual policy levels evaluate the evidence of an assembly and

generate a policy level specific granted set of permissions.

B. The permission sets calculated for each policy level are intersected with

each other.

C. The resulting permission set is compared with the set of permissions

the assembly declared necessary to run, or refuses and the permissions

grant is modified accordingly.

During security evaluation, other assemblies might need to be loaded to be

used in the policy evaluation process. For example, an assembly can contain a user -

defined permission class as part of a permission set handed out by a code development

group. Of course, the assembly containing the custom permission also needs to be

evaluated. If the assembly of the custom permission is granted the permission set

containing the custom permission it itself implements, then a circular dependency ensues.

To avoid this, each policy level contains a list of trusted assemblies that it needs for

policy evaluation. The list of required assemblies is naturally referred to as the list of

"Policy Assemblies," and contains the transitive closure of all assembly required to

implement security policy at that policy level. Policy evaluation for all assemblies

contained in that list is short circuited to avoid the occurrence of circular dependencies.

c. Role-based Security

The basic component of the code access security system, as it is described

in the previous chapter, is the identity of code. However, there is st ill a need to be able to

express security settings based on user identities. The runtime security system also

includes role-based security features, which are similar to the implementation of security

in many current operating systems. Two core abstractions in role-based security are

Identity and Principal. Identity represents the user on whose behalf the code is executing.

It is important to remember that this could be a logical user as defined by the application

21

or developer and not necessarily the user as seen by the operating system. A Principal

represents the abstraction of a user and the roles in which a user belongs. Trying to

explain better the distinction between the identity and the principal, it can be said that

identity is the user from his code point of view and principal is the user from his assigned

roles point of view.

3. Java Security
a. Introduction

Since the inception of Java technology, there has been strong and growing

interest around the security of the Java platform as well as new secur ity issues raised by

the deployment of Java technology. One of Java's main features is its ability to move

code over a network and to run that code. Unlike other languages, Java has been designed

to do this securely. The first versions of Java security, which used the concept of the

“sandbox,” was proved inadequate to support the demands for fine -grained security that

can be easily implemented. Recent releases, such as Java 2 Runtime Environment,

provide fine-grained security features that enable implementation of a flexible policy

decoupled from the implementation mechanism.

Although enforcement of policies during code execution is a substantial

part of security, proper security starts at the very beginning, during the generation of byte

code. A language's type safety, which is enforced by the compiler and checked by the

runtime environment, proves critical to an overall secure environment. There have been

many computer security breaches that stemmed from the ability to overflow buffers

easily or to access memory unimpeded. Those situations are caused in part by a

language's poor type safety and inadequate enforcement in the executing environment.

Despite the safety checks enforced by the compiler, the VM must still be able to deal

with faulty byte code, whether generated accidentally or maliciously. Java security

manifests itself in the following forms:

a) Protection built into the language,

b) Building blocks for a flexible secure environment, and

c) Protection against accidental or malicious attacks to the language and platform.

22

b. Basic Concepts

A fundamental concept and important building block of system security is

the protection domain [Saltzer and Schroeder] [1]. A domain can be scoped by the set of

objects that are currently directly accessible by a principal, where a principal is an entity

in the computer system to which permissions (and as a result, accountability) are granted.

The sandbox concept utilized in JDK 1.0 is one example of a protection domain with a

fixed boundary. The protection domain concept serves as a convenient mechanism for

grouping and isolation between units of protection. For example, it is possible (but not

yet provided as a built -in feature) to prevent protection domains from interacting with

each other so that any permitted interaction must be either through trusted system code or

explicitly allowed by the domains concerned. Protection domains generally fall into two

distinct categories: system domain and application domain. It is important that all

protected external resources, such as the file system, the networking facility, and the

screen and keyboard, be accessible only via entities within the system domain.

A domain conceptually encloses a set of classes whose instances are

granted the same set of permissions. Protection domains are determined by the policy

currently in effect. The Java application environment maintains a mapping from code

(classes and instances) to their protection domains and then to their permissions. A thread

of execution (which is often, but not necessarily tied to, a single Java thread, which in

turn is not necessarily tied to the thread concept of the underlying operation system) may

occur completely within a single protection domain or may involve an application

domain and also the system domain . For example, an application that prints a message

out will have to interact with the system domain that is the only access point to an output

stream. In this case, it is crucial that the application domain does not gain additional

permissions by calling the system domain. Otherwise, serious security implications can

ensue. In the reverse situation where a system domain invokes a method from an

application domain, such as when the AWT system domain calls an applet's paint method

to display the applet, it is again crucial that at any time the effective access rights are the

same as the current rights enabled in the application domain. In other words, a less

"powerful" domain cannot gain additional permissions as a result of calling or being

called by a more powerful domain.

23

c. New Enhancements of the Java 2 SDK

There are many enhancements in the security architecture of the latest

Java 2 Standard Development Kit (SDK). Several features that were previously available

separately are now part of the core API set. These include support for encryption and

decryption with the Java Cryptography Extension (JCE), support for Secure Sockets

Layer (SSL) and Transport Layer Security (TLS) protocols with the Java Secure Socket

Extension (JSSE), and support for user -based authentication and access controls with the

Java Authentication and Authorization Service (JAAS). In addition to the inclusion of

these previously optional packages, we can find new support for building and verifying

certificate chains with the Java Certification Path API and support for the Kerberos V5

mechanism under Java GSS-API and JAAS. Additional enhancements were made in

improving the security policy-managing tool, policy tool, and in adding support for

dynamically loading security policies.

The Java Cryptography Extension (JCE) provides support for encryption,

decryption, key agreement, Message Authentication Code (MAC), and some other

cryptographic services. Due to import control restrictions of some countries, the JCE

jurisdiction policy files shipped with the Java 2 SDK, release 1.4 allow "strong" but

limited cryptography to be used. An "unlimited strength" version of these files indicating

no restrictions on cryptographic strengths is available for those living in eligible

countries.

The Java Secure Socket Extension (JSSE) library provides support for

communicating using the Secure Sockets Layer (SSL) and Transport Layer Security

(TLS) protocols. Where the JCE operates on specific local data structures, the JSSE uses

a different abstraction, applying encryption/decryption to network socket traffic. It adds

server authentication, message integrity, and optional client authentication. Most people

think of SSL and TLS as the secure HTTP protocol, better known as HTTPS. SSL (and

thus HTTPS) permits encrypted traffic to be exchanged between the client and server. For

example, in an SSL mode, after an SSL client initiates a conversation with an SSL server,

the server sends an X.509 certificate back to the client for authentication (SSL also

supports mutual authentication). The client then checks the validity of the certificate.

Assuming the server is verified, the client generates a pre-master secret key, encrypts it

24

with the server's public key from the certificate, and sends the encrypted key back to the

server. From this pre-master key, the client and server generate a master key for the

session. After some basic handshaking, the encrypted exchange can commence.

The Java Authentication and Authorization Service (JAAS) provides for

the authentication of us ers and the authorization of tasks based upon that authentication.

This is an enhancement to the prior standard security model capabilities of enabling a

specific set of tasks based on authentication. Previously, anyone authenticated had access

to the same security restrictions. Now, there is control on what tasks are available for a

specific authenticated user.

The Java GSS-API (Generic Security Service) adds Kerberos support to

the Java platform. Kerberos is a network authentication protocol, originated at the

Massachusetts Institute of Technology (MIT) as project Athena back in 1987. The Java

GSS-API offers single sign-on within a domain, if everything within the domain has been

Kerberos-enabled. Support is also provided for single sign-on across different security

realms over a network. Used in conjunction with JAAS, once a user's identity is

established, future authentication requests are no longer necessary.

The fifth of the libraries, which is now standard, is the Java Certification

Path API. It provides classes for building and validating certificate chains, an important

requirement of a Public Key Infrastructure (PKI). These certificates provide for the

storage of security keys for users. By trusting the issuer of a certificate that holds the

keys, and trusting the issuer of the certificate that trusts the original certificate, you

establish chains of trust. By following this certificate path chain, you eventually either

end up with a certificate issued by a Certification Authority (CA) that you trust or a

certificate issued by a CA that you do not trust. Thus, the relying party can ensure a

subject's public key is genuine and trusted based on the trustworthiness of the underlying

certificate chain.

4. COM & DCOM

a. Introduction

The Component Object Model (COM) refers to both a specification and

implementation developed by Microsoft Corporation, which provides a framework for

25

integrating components. This framework supports interoperability and reusability of

distributed objects by allowing developers to build systems by assembling reusable

components from different vendors that communicate via COM. It also defines an

application-programming interface (API) to allow for the creation of components to

integrate custom applications or to allow diverse components to interact. However, in

order to interact, components must adhere to a binary structure specified by Microsoft.

As long as components adhere to this binary structure, components written in different

languages can interoperate independently of the programming language or the platforms

(MS Windows, UNIX, Macintosh). In addition, COM provides mechanisms for the

following:

ü Communications between components, even across process and network

boundaries

ü Shared memory management between components

ü Error and status reporting

ü Dynamic loading of components

Distributed COM (DCOM) is an extension to COM that allows network -

based component interaction. While COM processes can run on the same machine but in

different address spaces, the DCOM extension allows processes to be spread across a

network. With DCOM, components operating on a variety of platforms can interact, as

long as DCOM is available within the environment. It is best to consider COM and

DCOM as a single technology that provides a range of services for component

interaction, from services promoting component integration on a single platform, to

component interaction across heterogeneous networks. In fact, COM and its DCOM

extensions are merged into a single runtime. This single runtime provides both local and

remote access.

b. Security

The Component Object Model (COM) can make distributed applications

secure without any security-specific coding or design in either the client or the

component. Just as the COM programming model hides a component's locat ion, it also

hides the security requirements of a component. The same binary code that works in a

26

single-machine environment, in which security may be of no concern, can be used

securely in a distributed environment. COM provides two distinguishable categories of

security. The first is termed activation security, and it controls which objects a client is

allowed to instantiate. The second form is call security, which dictates how security

operates at the per-call level on an established connection from a client to a server object.

Activation security controls which classes a client is allowed to launch and

to retrieve objects from. The Service Control Manager of a particular machine

automatically applies activation security. Upon receipt of a request from a remote client

to activate an object the Service Control Manager of the machine checks the request

against the following information stored within its registry:

ü Machine-wide settings for securing activation

ü Per-class settings for activation

Call security in COM is provided via two mechanisms in order to secure

calls. The first is similar to DCE RPC, which means that COM provides functions and

interfaces that applications can use to do their own security checking. COM runs the

second mechanism automatically. If the application provides some setup information,

COM will make all the necessary checks to secure the application's objects. This

automatic mechanism does security checking for the process, not for individual objects or

methods. Applications requiring more fine-grained security can perform their own

security checking. The two mechanisms are not exclusive: an application can ask COM to

perform automatic security checking and also perform its own. COM call -security

services are divided into three categories: general functions called by both clients and

servers, new interfaces on client proxies, and server-side functions and call-context

interfaces. The general functions initialize the automatic security mechanism and register

authentication services. The proxy interfaces allow the client to control security on calls

to individual interfaces. The server functions and interfaces allow the server to retrieve

security information about a call and to impersonate the caller.

C. IC METADATA STANDARD FOR PUBLICATIONS

The IC Metadata Sub-Working Group (MSWG) has developed the Intelligence

Community Markup Language (ICML), which is based on a number of data modeling

27

activities that have occurred in the IC over the last few years. The ICML standard is

being developed in response to requests by numerous organizations within the IC to have

an IC-wide mandated XML model to support interoperability of intelligence content

across producers and consumers of information within the IC. Based on XML, ICML

defines tags that communicate important additional information about intelligence

content. Furthermore, ICML introduces:

1) Many document structures, such as reports, articles, and analytical packets.

2) An expanded collection of document metadata separated into administrativ e and

descriptive categories.

3) The most commonly used generic document components, such as paragraphs, lists,

tables, and media.

4) CAPCO-compliant security labels.

5) Descriptive content tags indicating better the subject matter of the information.

ICML first appeared at the Intelink Conference in September 2000 in the form of

an XML Document Type Definition (DTD). As stated in that early version, the purpose

of that DTD was

to provide a common set of XML elements (TAGS) for
implementing security-based metadata throughout the IC.
This DTD may be incorporated into various organizational
XML-based DTDs by calling the entity declaration
referenced within the core IC Security DTD.

At the end of 2001, the Intelligence Community Metadata Standard for

Publications (IC-MSP) was published, as part of the IC CIO Executive Council and

Working Group commitment to IC inter -organization interoperability. Since the first

version of IC-MSP (IC-MSP Release 0.5, 12/08/01), the focus remains to aid finished

intelligence production. And because the majority of the intelligence content being

produced within the IC is in the form of documents, the IC-MSP Panel decided that

limiting the scope of the initial IC-MSP release to document type of intelligence content

would yield the most benefit within the shortest period of time. The IC-MSP standard is

a flexible markup application can support many processes such as authoring, storage,

paper or web output etc. Furthermore, the IC-MSP consist of XML elements, structures

28

or models that are either characteristic to IC analyses and products or have general

application and have been established by government and industry as official or de facto

standards.

During the past year, six versions of the above IC-MSP were published, in order

to implement the improvements and the feedback of the agencies. The latest version 1.0a

was published on 16th of September 2002. It is actually the same with its previous version

1.0 (5th July 2002) containing only some corrections to the Data Element Diction ary

(DED) in order to remove disconnects between the DED and the various DTD modules.

At the same time, due to the increased requirements for security, The Intelligence

Community Metadata Standards for Information Assurance (MSIA) are being developed

to ensure the security of XML-based transactions throughout the community. The IC

MSIA includes additional efforts to facilitate secure transactions within the Intelligence

Community such as:

Ø Digital Signatures (XML-DSig)

Ø Security/Encryption (XML-Sec)

Ø Key Management System (XML-KMS)

Ø Information Security Marking (XML-ISM)

29

III. DBMS ARCHITECTURES.

A. OVERVIEW OF THE BASIC SECURE DBMS

1. Historical Background

In the mid 1970s, the US Air Force sponsored two programs for trusted relational

Database Management System (DBMS) research. The first work, done by Hinke and

Schaefer in 1975, [6] documented the design for a high assurance DBMS. It was based on

the Multics operating system, which contained all the relevant trusted code, and therefore

was responsible for all the access control. One year later, I. P. Sharp and Associates [5]

developed a model for a multilevel relational DBMS. This model was based on a layered

internal DBMS architecture using a method introduced by Parnas. Both the above

architectures depended on the security of the underlying operating system’s kernel, and

for that reason they were referred to as “kernelized architectures.”

Two years later, the US Navy sponsored two more efforts contributing to the

trusted DBMS development. The first, called “The Military Message System Model,”

introduced a multilevel container that holds sub-objects that the container’s level

dominates. Even though it influenced many trusted DBMS designs, it did not result in the

development of a design for a multilevel DBMS. The second program sponsored by the

Navy intended to address the specific requirements for Navy surveillance systems.

Among the special features of this model was the usage of the container concept and

nesting database objects. Both the “Integrity-prototype” and the “Trudata” DBMS used

the Navy model as their basis.

One of the most important points in the trusted DBMS development occurred

when the Air Force sponsored a study on trusted data management at Woods Hole,

Massachusetts. One of the groups there recommended a separation into three approaches:

the kernelized (or Hinke-Schaefer) approach, the distributed (or back-end or replicated)

approach, and the cryptographic integrity-lock (or spray painting) approach. All of those

three approaches form the first of the two main categories of the multi-level secure

DBMS architectures, which was named “the Woods Hole architectures.” The other main

category is referred to as “the trusted subject DBMS architectures,” which mainly differs

30

from the Woods Hole architectures in that they perform their own mandatory access

control. Since then several variations have developed within these two main categories.

2. Woods Hole Architectures

The Woods Hole architectures assume that an untrusted, usually commercial-off-

the-shelf (COTS) DBMS is used to access the data. In order to provide an overall secure

DBMS system, trusted code is developed around that DBMS. The three different Woods

Hole architectures address three different ways to wrap code around the untrusted

DBMS.

The Kernelized architecture scheme (Figure 5) uses a trusted operating system

and multiple copies of the DBMS; each is associated with a trusted front end. The trusted

Figure 5. Kernelized DBMS

front end-DBMS pair is associated with a particular security level. Between the DBMS

and the database, a portion of the trusted operating system keeps the data separated by

security level. Each trusted front end is trusted to supply requests to the proper DBMS.

The database is separated by the security level. The trusted operating system separates the

data when it is added to the database by a DBMS and combines the data when it is

retrieved (if allowed by the security rules of the requesting DBMS). The high DBMS

obtains data combined from the high and low segments of the da tabase. The low DBMS

can only obtain data from the low segment of the database. A benefit of this scheme is

that the access control and the separation of data at different classification levels is

31

performed by a trusted operating system rather than the DBM S. Data at different security

levels is isolated in the database, which allows for higher -level assurance. Users interact

with a DBMS at the user's single -session level.

The distributed architecture scheme (Figure 6) uses multiple copies of the trusted

front end and DBMS, each associated with its own database storage. In this architecture

Figure 6. Distributed DBMS

 scheme, low data is replicated in the high database. When data is retrieved, the DBMS

retrieves it only from its own database. A benefit of this architecture is that data is

physically separated into separate hardware databases. Since separate replicated

databases are used for each security level, the front end does not need to decompose user

query data to different DBMSs.

The Integrity Lock architecture scheme (Figure 7) places a trusted front-end filter

between the users and the DBMS. The filter provides security for the MLS. When data is

added to the database, the trusted front-end filter adds an encrypted integrity lock to each

unit of data added to the database. The lock is viewed by the DBMS as just another

element in the unit stored by the DBMS. The encrypted lock is used to assure that the

retrieved data has not been tampered with and contains the security label of the data.

When data is retrieved, the filter decrypts the lock to determine if the data can be returned

to the requester. The filter is designed and trusted to keep users separate and to store and

32

Figure 7. Cryptographic Integrity Lock DBMS

provide data appropriate to the user. A benefit of this scheme is that an untrusted COTS

DBMS can perform most indexed data storage and retrieval.

3. Trusted Subject Architectures

The Trusted Subject architecture (Figure 8) is a scheme that contains a trusted

DBMS and an operating system. The DBMS can be customized with all the required

security policy (the security rules that must be enforced) developed in the DBMS itself.

The DBMS uses the associated trusted operating system to make actual disk data

accesses. This is the traditional way of developing MLS DBMS capabilities, and it can

achieve high mandatory assurance for a particular security policy by sacrificing of some

DBMS functionality. This scheme results in a special purpose DBMS and operating

system that requires a large amount of trusted code to be developed and verified along

with the normal DBMS features. The trusted code provides security functionality and has

been designed and developed using a rigorous process, tested, and protected from

tampering in a manner that ensures the Designated Approving Authority (DAA) that it

performs the security functions correctly. The DAA is the security official with the

authority to say a system is secure and thus its use is permitted. A benefit of the trusted

subject architecture is that the DBMS has access to all levels of data at the same time,

33

Figure 8. Trusted Subject Architectures

which requires less processing time when retrieving or updating data. This scheme can

also handle a wide range of sensitivity labels and can support complex access control. A

sensitivity label identifies the classification level (e.g., confidential, secret) and a set of

categories or compartments that apply to the data associated with the label.

B. ANALYSIS AND REQUIREMENTS OF DBMS ARCHITECTURES

1. Basic Requirements

The DBMS that will manage a large amount of documents, like those in large

organization must, at least, include a number of capabilities that will assure an acceptable

level of functionality. First of all, the DBMS has to be scalable, in both performance

capacity and incremental data volume growth. The proposed solution scales in a near -

linear fashion and behaves consistently as the database increases in size, the number of

concurrent users and the complexity of queries. DBMS must also have a powerful design

in order to support complex decisions with multi-users and a mixed workload. The

optimizer should be mature enough to support every type of query with good

performance, and must also determine the best execution plan based on the changing data

demographics. The optimizer mus t also check on the conditional parallelism and

determine what causes the variations in the parallelism deployed. Finally, it must check

on the dynamic and controllable prioritization of resources for queries.

34

Manageability through minimal System Administrator intervention is another

feature that must be present in DBMS architecture. System administration can be simpler

if the DBMS provides a single point of control, which will allow one to create and

implement the new tables at any time. In order to support the critical applications of a

large-scale organization’s mission, the DBMS must have a high availability level. Any

down time and any issues that might deny or degrade service to end-users must be

completely transparent to the system administrators. These down time requirements could

include batch load times, software/hardware upgrades, severe system performance issues

and system maintenance outages.

The design and the system architecture should also be flexible and extensible to

keep pace with evolving business requirements and to improve the value of the existing

investment in hardware and applications. The impact of repartitioning tables and the

addition or deletion of columns must be minimal. The design should also provide optimal

performance across the full range of normalized, star and hybrid data schemas with large

numbers of tables.

Nowadays, interoperability through the web or internal networks has also become

a major factor when deciding on a DBMS. Its ability to support multiple applications

from different business units, leveraging data that is integrated across business functions

and subject areas is considered a critical feature of the DBMS. All the above features, of

course, must be previously proven, for the specific product to avoid a risk.

As more business is conducted on the Web, securing data in motion and user

identities is a growing concern. User management and deploying secure infrastructures

have risen to the top of the database administrator’s priorities. The architecture of the

DBMS should protect the data stored in the database, when transferred from unauthorized

access, and from malicious destruction or alteration and accidental introduction of

inconsistency. Encryption forms the basis for secure authentication of users. Even tho ugh

absolute protection of the database from malicious abuse is not possible, a sufficient

increase in the required cost to the perpetrator can be a deterrent. In order for the DBMS

to be protected against malicious or unauthorized access, several forms of authentication

and authorization must be enforced. The system should also allow the users to grant some

35

forms of authority to other users ensuring at the same time that this authorization can be

revoked at some future time. Roles help to assign specific sets of privileges to different

groups of users inside an organization. When the stored data are highly sensitive, the

various authorizations provided in the database may not be sufficient. In such cases, data

must be encrypted. Only the user who knows how to decrypt and posses the necessary

decryption key should be allowed to read the data. Compatibility with the modern

techniques of encryption-decryption, Public Key Infrastructure (PKI), and Digital

Signatures are highly required when deciding on a DBMS for today or for the future

world.

2. XML and DBMS Architectures

Extensible Markup Language (XML) is emerging as the format of choice for a

variety of types of data, especially documents. Providing its ability to tag different fields,

XML makes searching simpler and more dynamic. It is also ideal for organizations trying

to meld incompatible systems because it can serve as a common transport technology for

moving data around in a system-neutral format. In addition, XML can handle all kinds of

data, including text, images and sound, and is user-extensible to handle anything special.

One of the main concerns until now has been how to manage the XML-tagged data. A

suitable and convenient solution is to use databases to store, to retrieve and to manipulate

XML. The idea is to place the XML-tagged data in a framework where searching,

analysis, updating and output can proceed in a more manageable, systematic and well -

understood environment. The primary advantage of databases is that users are familiar

with them and their behavior, so combining XML with a database context seems natural.

A few different approaches exist regarding the use of XML in a database. The

main categorization is according to the format that the DBMS uses to store the XML

document. Half of those categories store XML in its native format and the other half

transform it and store it in a common relational or object-oriented database. There are a

number of reasons to use existing database types and existing database products to store

XML, even if it is not in its native form. First, ordinary relational and object-oriented

databases are well known, while native XML databases are new. Second, as a result of

familiarity with relational and object-oriented databases, users understand their behavior,

especially regarding performance. Many businesses are reluctant to move to a native

36

XML database whose characteristics—especially scalability—have not been tested.

Finally, relational and object-oriented databases are safe choices in the corporate mind.

On the other hand, one of XML's attractive features is its hierarchical organization, which

database tables crush. Relational databases must map XML to relational tables and

therefore flatten XML structures into rows and columns each time data is needed. In

addition, translating XML to and from the database requires considerable processing,

especially for large or complex documents. This performance factor may be important

when dealing with web pages through a dial-up Internet connection, but at the same time

this performance factor may be of slight importance if it is used in an Intranet or through

a high-speed Internet connection.

Storing XML documents in a relational or object-oriented database can be done in

different ways. First, one could extract the data elements in an XML document and store

them as data rows and columns in an SQL database. Many call this technique “element

storage.” Given an example of an XML intelligence document, a number of SQL tables

could be created with columns for the individual e lements of document. The

“IdentifierList,” the “DocumentID, ” the “Publisher,” or the “AgencyAcronym” could be

some of the columns. Then, those kinds of data can be managed in SQL with normal SQL

operations. By retrieving the data, an XML document can be pr oduced and published or

transferred via the Web. In case there are new data that must be stored, an “UPDATE”

operation, using common SQL commands, must be done. Element storage has the

advantage that all of the data from the XML document is available to SQ L as normal

SQL data so that it can be queried and updated with SQL operations. However, element

storage has the disadvantage of the extra overhead of assembling and disassembling the

XML documents for interchange.

One can also store the XML document in a single SQL column. Since XML is

primarily a file format, a natural storage mechanism is simply a flat file. It is usually

referred to as “document storage.” This approach has some drawbacks, such as data

isolation problems, integrity checks and concurrent-access problems. However the wide

availability of XML tools that work on file data makes it relatively easy to access and to

query XML data stored in files. Thus, this storage format may be sufficient for some

kinds of applications. Using the previous example, a table can be created having a

37

column for the specific category of IC’s document. The data -type of that column could be

SQL text, or a Java class designed for XML documents in general, or a Java class

designed specifically for each specific type of IC XML document. Document storage

eliminates the need for assembling and disassembling the data for interchange. However,

there is a need to use Java (or any other language) methods to reference or to update the

elements of the XML documents while they are in SQL, which could be slower and less

convenient than the direct SQL access of element storage.

Finally, there is a combination called “hybrid storage” of the above element and

document approaches that exploits the advantages of both. This mainly stores an XML

document in an SQL column, but at the same time extracts some of its data elements into

separate columns for faster and more convenient access. Given a previous example, one

can create SQL tables, such as for document storage, and then one can include (or later

add) just one or more columns to contain elements extracted from the same type of

documents, such as for element storage. Hybrid storage balances the advantages of

element storage and document storage, but has the cost and complexity of redunda nt

storage of the extracted data.

Since XML documents are character data, we could analyze them and extract

their data using SQL character string operations. However this process can be

complicated and tedious. Using XML with SQL is greatly facilitated by using XML tools

written in Java (or C++,) which are called “parsers,” and their main job is to analyze and

to validate XML documents. Specifically, XML parsers provide many capabilities,

including the following:

ü Checking that a document is well formed and valid;

ü Handling character set issues;

ü Generating a Java representation of a document’s parse tree;

ü Building or modifying a document’s parse tree;

ü Generating a document’s text from its parse tree.

There are many XML parsers available in Java, often with a free license or public

domain. Most XML parsers implement two standard interfaces, the Simple API for XML

38

(SAX) and the Document Object Model (DOM). SAX provides facilities for specifying

input sources, character sets, and routines to handle external references. It generates

events during the parse so that user routines can process the document incrementally, and

it returns a DOM object that is the parse tree of the document. On the other hand, DOM

provides facilities for stepping through the parse tree and for assembling a parse tree.

Applications that use the implementations of the SAX and DOM interfaces of an XML

parser can be portable across XML parsers.

Another area of concern about the XML storage is where the mapping should be

done. Almost all the languages that could manipulate XML can run in both the client and

the server. For example, Java methods can be executed in either the client or server

environment, giving us a choice of which environment to map an XML document to or

from SQL. This is a consideration only for element storage and hybrid storage, since

document storage involves little or no processing of the document. If the main priority is

the efficiency, then mapping should be done in the client and only the SQL data should

be transferred between the client and the server. Unfortunately this approach could not

provide us with a high level of security. When security is the priority, the entire process

must be done in the server where the appropriate security policy can be enforced.

C. RESEARCH ON RELATED DBMS PRODUCTS
1. Oracle 9i

Oracle 9i (where i reflects Oracle’s emphasis on the Internet) is not only the

version name for the database server, but is also the family name for a whole suite of

products around the core server. These products in clude the Oracle9i Application Server,

the Oracle9i DBMS and the Oracle9i Developer Suite. It was officially released in

Europe at the Oracle Open World in June 2001 and became available immediately

thereafter. Oracle 9i brings new or enhanced functionalit y in many areas such as

availability, scalability, performance, manageability, Internet content management and

security. Oracle’s Advanced Security option can be separated into three major parts:

• Preserving the privacy and integrity of network data and communication.

• Providing strong authentication services for users, databases and web servers

• Enterprise User Management

39

It is widely known that all network traffic is vulnerable to eavesdropping, data

capture, replay, data modification and person-in the-middle attack. The network security

features of Oracle Advanced Security address these concerns by integrating encryption

and integrity checking. The cryptographic functionality in Oracle Advanced Security

converts all clear text into cipher text. The cipher text is transmitted across the network in

a way in which it is computationally unfeasible to convert the cipher text back into its

corresponding plain text without the correct key. The algorithms used to encrypt Oracle

Net traffic are:

• Triple DES (3DES, 2Key and 3Key 112- and 168-bit keys)

• RC4 (40-, 56-, 128-, 256-)

• Advanced Encryption Standard (AES)

Oracle Advanced Security also provides encryption capabilities to thin Java Database

Connectivity (JDBC) clients. All Oracle Net traffic between the database and the client

(or a web server) is encrypted. A key benefit of using Oracle Advanced Security

encryption is that the users or the database do not need to have digital certificates or

communicate over Secure Socket Layer (SSL).

Data integrity protects against data modification and replay attacks and proves to

the receiver of the message that the message has not been tampered with in transit. This is

one of the major requirements in today’s online world. Data integrity checking, which is

also called “cryptographic check summing” provides sequencing and hashing to protect

against these packet attacks. Oracle Advanced Security provides industry standard

implementations of Message Digest 5 (MD5) or the Secure Hashing Algorithm (SHA -1)

for providing data integrity.

There is a need for augmenting the password-based authentication with stronger

measures to identify the users. Oracle Advanced Security provides several strong

authentication schemes while supporting industry standards including Kerberos, Smart

cards, Remote Dial-in User Service (RADIUS), Distributed Computing Environment

(DCE), Standards-based Public Key Infrastructure (PKI), Entrust Profiles, and X.509v3

compliant digital certificates over Secure Socket Layer (SSL). Strong authentication

40

mechanisms such as Kerberos, DCE and X.509v3 certificates can also provide Single

Sign On capabilities to applications that rely on these authentication services.

Today’s business environment requires an around-the-clock user administration

just as there is a need for a twenty-four hours, seven-day a week application availability.

The costs of user administration could be very high if the users and their authorizations

continue to be duplicated across the different applications that are deployed throughout

the enterprise. Oracle’s Enterprise User Security provides the ability to manage

enterprise-wide users easily and securely by

• centralizing the storage of user credentials, roles and privileges in an

LDAPv3 compliant directory server;

• providing the infrastructure to enable single sign-on using X.509v3

compliant certificates;

• allowing password authenticated database users to be centrally managed

as password authenticated enterprise users.

2. IBM DB2 Universal Database V7

The DB2 Universal Database (UDB) is a family of products that covers a broad

range of heterogeneous platforms, scaling from handhelds up to mainframes. One of the

most popular products of that family is the DB2 Universal Database for Unix, Windows

and OS/2 (DB2 UDB for UWO), which is packaged into four editions

• DB2 UDB Personal Edition for usage in a single-user mode (DB2 UDB

PE)

• DB2 UDB Workgroup Edition applications and data shared in a

workgroup or department (DB2 UDB WE)

• DB2 UDB Enterprise Edition for complex configurations and large

database needs from uniprocessors to the largest SMP's (DB2 UDB EE)

• DB2 UDB Enterprise – Extended Edition for large database support in

Massively Parallel Processor (MPP's) or clustered server environments

(DB2 UDB EEE)

41

 DB2 UDB 7.2, released in June 2001, is identical to Ve rsion 7 FixPak 3 as far as

the database engine is concerned. However all of the enhancements outside of the engine

(e.g. new connectors, improvements to the warehouse manager) are shipped only as part

of V7.2. The Version 7.2 of DB2 focuses on integrating business intelligence

functionality, on integrating IBM MQSeries and on integrating XML documents

supporting Web Services based on XML/SOAP/UDDI. Moreover, DB2 UDB 7.2

includes many enhancements on store procedures and data management.

To protect data and resources associated with a database server, DB2 uses a

combination of external security services and internal access control information. To

access a database server one must pass some security checks before being given access to

a database or other resources. The authentication of a user is completed using a security

facility outside of DB2. The security facility can be part of the operating system, a

separate product, or, in certain cases, may not exist at all (like Windows 95). On UNIX

platforms, the security facility is in the operating system itself. DCE Security Services is

a separate product that provides the security facility for a distributed environment. DB2

uses the security facility to authenticate users in one of two ways. First, DB2 acquires t he

user’s successful security system login as evidence of the user’s identity and allows him

or her to work with local commands to access local data or to work with remote

connections where the server trusts the client authentication. Second, DB2 accepts a user

ID and password combination and uses the successful validation of the ID and password

by the security facility as evidence of the user’s identity. In this way, DB2 allows remote

connections in which the server requires proof of authentication and use of operations

when the user wants to execute a command under an identity other than the identity used

for login.

This authorization process is performed inside the DB2 by using tables and

configuration files. Each authorized name is associated with a perm issions record. The

two types of permissions recorded by DB2 are privileges and authority levels. A privilege

defines a single permission for an authorization name, enabling a user to create or access

database resources. Privileges are stored in the database catalogs for a given database.

Authority levels provide a method of grouping privileges and controlling higher -level

database manager maintenance and utility operations. The authorities used by DB2 are

42

1) System Administration Authority (SYSADM)

2) Database Administration Authority (DBADM)

3) System Control Authority (SYSCTRL)

4) System Maintenance Authority (SYSMAINT).

The privileges are

1) Database Privileges

2) Schema Privileges

3) Table and View Privileges

4) Package Privileges

5) Index Privileges.

Database-specific authorities are stored in the database catalogs for each database

while system authorities are stored in the database manager configuration file for a given

instance. Moreover, the concept of “groups” provides a useful way of performing

authorization for a collection of users without having to grant or to revoke privileges for

each user individually. Unless otherwise specified, group authorization names can be

used anywhere authorization names are used for authorization purposes. The recorded

permissions are compared to the authorization name of an authenticated user and those of

groups in which the user is a member. Depending upon the comparison, DB2 decides

whether to allow or to deny the user the requested access.

3. Sybase Adaptive Server Enterprise (ASE) 12.5

Sybase Adaptive Server Enterprise (ASE) 12.5 includes a Policy-Based Access

Control framework, which provides a powerful and flexible way of protecting data, all

the way down to the row level. Security policies can be defined according to the value of

indiv idual data elements, and then the server can enforce these policies. This means that

once a policy has been defined, it is automatically invoked whenever the affected data is

queried, whether through an application, a specific query, a stored procedure, or a view.

Because the server enforces security, the security administration of an ASE is simpler.

The security administration should focus on defining a security policy to enforce

43

consistently across the entire server. This is accomplished through the combined

capabilities of Access Rules, Login Triggers, and Domain Integrity Rules. Let’s examine

each of these capabilities.

Access Rules are the fundamental concepts of Policy-Based Access Control. An

Access Rule is bound to a specific column and then invoked on any SELECT, UPDATE,

or DELETE operation on the corresponding table. Login Triggers are stored procedures

that execute as part of the login process. They are a convenient way of configuring an

Application Context by looking up and setting values for all of the attributes within a

context. "Context" a user-defined context can be used by one or more applications.

Contexts are set up on a session-by-session basis allowing the security policy to be based

on properties of both the application and the user invoking the application. Furthermore,

Login Triggers can query other tables and then use that data to support a number of

different account usage policies. Domain Integrity Rules are existing ASE server -

enforced integrity mechanisms that can be used in conjunction with Access Rules to

provide security policy control over the flow of information into and through the server.

As is the case with Access Rules, Domain Integrity Rules are bound to columns. They are

invoked on UPDATE and INSERT operations.

Sybase ASE 12.5 offers two methods of authentication: the famous user name and

password pair, and the digital certificates. The client passes a user name and password to

create an authenticated session with the server. This authentication is accomplished on

the server when it places the user name on an Access Control List role using its own

management tool. Then the server can either use the user name alone, or it can

authenticate the password using the underlying operating system. This method places all

enterprise-class authentication verification into a single repository—the operating system,

which according to Sybase heightens security. By using the enterprise’s operating system

as the password repository, the involved “links” are less and the chance that security

chain will break is accordingly smaller.

The other method of authentication provided by ASE is the X.509 digital

certificates. The certificate contains information, such as the user’s name and the

authority that issues the certificate, and then verified the users identity and the user’s

44

public key. Digital certificates add an extra level of security over traditional user name

and password pairs by controlling the possession of the certificate. The Server’s Security

Manager accepts a user name and allows access to a role, as well as allows the user to

provide a digital certificate by choosing from a list of known digital certificates. In this

way, no user names or passwords are ever sent across the wire. The Server’s Security

Manager can also accept digital IDs from the Entrust PKI to authenticate users. The

Entrust PKI allows advanced features like single login for every application within the

enterprise. The Entrust ID can be used the same way every other digital certificates are

used, utilizing Entrust’s PKI as the certificate database.

After the authentication process, the next step is to control the objects to which

the authenticated users have access. Sybase ASE uses Access Control Lists (ACL) to

manage this type of object access. An Access Control Lis t (ACL) works with the idea of

building a “role” and placing specific users in that defined role. Each role would have

different privileges according to that role’s responsibilities and tasks that must be

performed. A new role can be defined through the Server’s Security Manager. As soon as

an administrator has defined that role, he can open it and can configure the authorized

users and digital certificates and the unauthorized users and digital certificates. When a

role is created and the users are placed into that role, then this role can be applied directly

from within the manager. This allows one to choose which level of granularity best fits

each business requirements. When a user’s business role changes within the

organization, the administrator can simply move that user into a different role in the

server, and all of their access controls will migrate with them. As components are reused

in future applications, the same security restrictions can also be reused.

D. THREE-TIER ARCHITECTURE

Many of today’s applications can be divided into three distinct areas:

i. The Presentation Logic: the user interface that displays data to the user or

accepts input from the user.

ii. The Business Logic: validates and processes the data, ensuring that it is

consistent and in accordance to the requirements and the specifications

before being added to the database.

45

iii. The Data Access Logic: communicates with the database and provides

access to the tables and indices. It also packs and unpacks the data.

The user interface in those applications is usually an HTML, XML or XHTML

file, either dynamically generated for each case, or a saved, static one. Furthermore, the

front-tier, user interface can also contain client-side scripts and sometimes Java applets.

But when portability and interoperability is the main concern, the XHTML is the

preferred mechanism for the user’s representation. Almost all the browsers support

XHTML; so designing the user interface to be accessible through a Web browser

guarantees a portability and interoperability across most platforms. The user interface

communicates with the middle -tier business logic by using the networking features that

the browser provides automatically.

When the middle-tier receives a request from the user interface, it processes the

request according to the business logic and then accesses the database to manipulate any

data required. Generally, in today’s multi-tier architectures, Web servers are increasingly

used to build the middle tier. They can efficiently provide the business logic that

manipulates data from the databases and that also communicates with the client Web

browsers. This request-response model of communication between the client-browser and

the server is accomplished by using a specific Java programming called a servlet. A

servlet extends the functionality of a server and is based on the javax.servlet and

javax.servlet.http packages that provide the necessary classes and interfaces.

The middle-tier servlet interacts with most of the third-tier database systems

through the Java Database Connectivity (JDBC), which provides all the means required

for communication. Developers need not be familiar with the specifics of each database

system. They use common SQL-based queries and the JDBC driver handles the specifics

of interacting with each database system. Moreover, other technologies like ODBC,

developed by Microsoft, also provide generic access to disparate database systems on the

Windows platform (and some UNIX platforms). In those cases, Java enables the JDBC -

to-ODBC driver to allow any Java program to access any ODBC data source.

Organizations that divide their applications according to the above three distinct

and separate areas can gain many advantages. For example, component roles are

46

specialized, improving maintainability; networking and I/O overheads. They are also

clearly defined within a 3-tier framework, which provides a good basis for component -

based development and reusability. Components in the business layer can be shared by

any number of components in the presentation layer. Furthermore, using a 3-tier

architecture enhances infrastructure independence. This is because presentation and data

access areas that are often infrastructure-dependent are separated from the application's

business logic. Finally, a specific set of skills is required to develop each tier, so tiers can

be developed independently of one another. For example, the thin presentation tier allows

front-end experts to do their work without being affected by developments occurring in

the business logic tier.

47

IV. IMPLEMENTATION

A. SECURITY ARCHITEC TURE OF THE PROTOTYPE DEVELOPMENT

1. Introduction

The prototype is based on the three-tier architecture, which discussed in the

previous chapter. The prototype implements a web service provided by the lat est version

of the Apache-Tomcat web server. It represents the middle -tier in the three-tier

architecture that can be integrated with various other commercial products. The Microsoft

Access Database simulates the third-tier, while the first-tier can be any of the commonly

used Web browsers. The prototype is designed to process everything in the server side

and to dynamically create every response to the user.

Figure 9. Security Architecture

The database is used to store document data, document metadata and user security

data and to provide the requested resources to the service, which is the only software

component that makes the security decisions according to the policy. The DB is also

relied upon to keep separate the different levels of data. For simplicity, the database uses

the “document storage” technique that was analyzed in the previous chapter. From the

security point of view, it is better to have the web and the database server running on

48

different machines but in the same physic al location in order to reduce potential

malicious actions during their communication. If for any reason the web server and the

database server must be separated, besides the known technologies for secure

communication (such as SSL), a modified cryptographic integrity lock can be

implemented. Similarly to the previous discussed Cryptographic Integrity Lock

Architecture, the database would be assumed as untrusted, and the server will pass all the

received information through the trusted filter.

The selected components (e.g. operating system, programming language, web

server, database, etc) are those commonly used nowadays. Most of them are also open

source or free software, which was the only reason they have been selected and not for

their security features. The organization implementing the prototype, depending on its

specifications and its requirements must choose the appropriate high assurance operating

system that would support the web and database servers. Furthermore, all of today’s

architectures for secure authentication and authorization (e.g. PKI, Kerberos, X509) as

well as those for secure transmission (e.g. encryption, SSL) between the user and the

server can be easily integrated and used because the Java programming language and the

XML supports all of them.

Even though the user’s workstation is assumed as an “untrusted” environment, it

is highly recommended to use a high assurance operating system, which will protect the

user and the overall security of the organization. First of all it is import ant to establish a

“trusted path” communication between the user and his or her own machine and then a

secure communication path between the client machine and the server. Furthermore, care

should be taken to prevent high level data from being written into low level server-

managed objects by mistake or malice. This can be possible when a user had a previous

higher level session, and then logged in (the same user or another one) at a lower level

session. Residual data from the higher level session might be available on the client

during the lower level session creating an “object reuse” problem. It can be addressed by

simple techniques, such as a diskless workstation or an automatic user’s machine reboot

operation after every log off from the system. It is also a potential field for further

research and future work.

49

2. Security Policies

As it is already mentioned, all the security decisions are made by the server,

which is the only software component that enforces the security policy of the

organization. The security manager of the prototype implements a Mandatory Access

Control (MAC) policy using security objects that are dynamically generated from XML

metadata security tags. For example, even though the information related to a user or a

file are retrieved from the database, the security objects and their permissions are

generated in the server according to the enforced security policy. Those objects are

related to the file’s (or user’s) metadata tags, and are kept “alive” only during the current

user’s session and if for any reason the session is invalidated the objects are destroyed.

Moreover, there is no way for a user, to directly communicate with the back-end database

and request any resources because the database server accepts requests only from the

assigned web server. Depending on the specific products, their physical location and their

configuration, an authentication between the web server and the database server can be

done once or in every request.

The security policy of the prototype system allows the authenticated user to open

or to save documents at the level logged on and below. However, every time a user saves

a file to the system, a user’s object and the date and time are attached to the file, making

that file unique. The main purpose of this operation is to make a clear distinction from the

various versions of the same file, saved in the system by the same or other users. Only

specifically authorized users may change the classification of documents. Concerning the

communication between two servers, when a user requests a file that is located in an

associated server, there are two different approaches depending on where the final

decision is made. In the first approach, the requesting server, after its successful

authentication, sends the user’s object and the associated server makes the decision if the

requested file is releasable. In the second approach, after the successful authentication of

the requesting server, the associated server sends all the file names and their security

objects to the reques ting server, which will decide which of them are releasable to the

specific user. In the prototype implementation, the second approach is used because the

intention is to share the documents and not the user’s information. Furthermore it

50

provides a better flexibility because each server can enforce differently its own policy to

its own users.

B. STRUCTURE OF THE PROTOTYPE DEVELOPMENT

1. Main Idea

The prototype is mainly based on the object-oriented fundamentals, which are

perfectly supported by the Java programming language and the XML features. The user

of the system and its security attributes are represented as an object. Every file selected

by the user either for opening or for storing is parsed and an associated security metadata

labels object is created. The system compares those two objects and according to the

security policy, determines the response to the user’s request. The files’ related objects,

the user’s objects and the processing software are all kept and are all managed in the

server area, which is assumed to be a secure environment. The interface with the user is

achieved though web pages that are generated dynamically according to every situation.

As already mentioned, the XML file’s security attributes are mapped to a Java

object. Due to the structure of XML, it is also possible to map every paragraph of the

document to a Java object and to manipulate each paragraph differently. Even though this

technique can be implemented easily from a technical point of view, there would be

problems with the logic of the document itself. Accessing the paragraphs of a document

that are not allowed due to their security attributes could make the document non -

contiguous and potentially difficult to understand. The only exception is when the author

of the document has the special training required to write those multi-level documents,

which must be understandable, persistent and of course without revealing sensitive

information by inference. This is an issue that the Intelligence Community Metadata

Working Group has already noted in their reports and conferences.

2. Description of System’s Logic—Flow Diagrams

The first page presented to the user by the server is a simple html file, which

briefly describes the application and the necessary links to advance to the other pages.

One of the links is “Help,” which opens another html file with general directions about

the use of the application and some answers on usual problems one might encounter.

Another link, in the main page is “User Login,” which opens a simple html file with a

form waiting to receive the user’s login name and password. The inputs of the login page

51

are sent to the first Java servlet, called Login.class, which has the responsibility to

authenticate the user according to the user name and passwor d received.

Figure 10. Login Flow Diagram

The Login.class initiates itself and attempts a connection with the third—tier

database server. When the connection is established, this class queries the database using

the user’s credentials. The response from the database is processed inside this class. In

case those credentials are not valid, an error HTML page is displayed with a respective

message and the appropriate options to continue. If the user’s credentials are valid

according to the database, a number of queries are sent again to the database server to

retrieve the authorizations of the user and those files are then available according to those

authorizations. A UserBean object is created and attached to the new session. This object

will be used during the whole procedure.

After the authentication and authorization of the user, the control is passed to the

UserOptions.class that generates a web page with some of the user’s personal data, such

as last name, first name, and the available options. Those options ar e the main menu and

they are presented in a drop down list. When one of them is selected, the control is

passed to the UserSelection.class. The UserSelection.class does not generate any web

52

pages. It is only responsible for redirecting the control to the next respective servlet,

according to the user’s selection.

Figure 11. Main Menu Flow Diagram

As can be seen in Figure 11, the user is presented with four choices. The first

choice, named “Save to Database,” is used when the user has created or copied a file

inside his own machine and wants to send it to the server. The first servlet called in that

option is ImportToSave.class, which generates a web page waiting for a filename to be

sent to the server. The selection of the filename can also be done through the “br owse”

button that will initiate the “open file” window, provided by the operating system.

Choosing from the local file system will be more convenient than writing the name of the

file. On this web page, some of the user’s data and some other administrative information

that will be appended on the selected file are presented. The user cannot change any of

his or her data associated with the file, because this is done on the server side, and their

presentation on the page cannot affect their processing on the server, because the system

does not accept those kind of information from the user. The user can only change the

presented administrative information in order to characterize the file. Furthermore, the

1. Save to Database
2. Open from Database
3. Open from External DB
4. Logout

53

user can select the classification of the file, which according to the enforced policy

(prohibits “write-up” or “blind-write”) could not be higher than the user’s present

classification. The presented classification choices are only those accepted from the logic

of the system (e.g. “write-down”). Finally, the page displays the date and the time that

will be appended to the file in order to be used later as the key reference for the version

of the file.

When the user inputs the filename and selects the “upload to the server” button,

the SaveFile.class is called. The first task of this class is to initiate the upload procedure.

During the uploading, a temporary file position is created in the web server area in order

to accommodate the file. After a successful uploading, the server parses the file in order

to complete a number of required checks. The first of them is to identify that the file is an

XML file and that it is well formed and valid according to the Intelligence Community

Metadata Standard’s for Publications. This task is achieved by the Echo24.class that

parses the file using one of the “SAX Parsers” provided by the “javax.xml” packet of

Java. If the file is well formed and valid, a FileTags.class object containing all of its

security attributes is created for that specific file. The system retain s the FileTags object

only during the required time for processing inside the server or until the end of user’s

session.

During the uploading and parsing process, a number of messages are created and

presented to the user in order to give him or her a view of the procedure. If the system

encounters any problem or errors, during the above process, an appropriate message,

indicating the cause is generated and displayed. If the process is completed successfully,

the newly created FileTags object for that spec ific file as well as the UserBean object are

sent to the SecMetadataManager.class. This class acts as the security manager. The

important task that the SecMetadataManager.class performs is to compare the two

objects and to generate the decision regarding that specific file and that specific user.

When the user requests to store the file with a different classification than the XML

security attributes contained in the file itself, an appropriate message is generated. This

operation helps to prevent unintentional change of the file’s classification, made by user’s

mistake or malicious code, to downgrade a document for disclosure to lower

classification users. For example, when a user currently logged on as “SECRET,”

54

requests to save a file as “UNCLASSIFIED,” but the XML file contains security

classification “CLASSIFIED,” then the system generates an “downgrade” message to

warn of the difference. If the user confirms the change of the file from “CLASSIFIED” to

“UNCLASSIFIED,” then the system downgrades the file and saves it in the respective

area with the changed security attributes. According to the policy, there is no case for a

user to have the capability to request the system to save a file with a classification higher

than the classification for which the user is currently logged on. The

SecMetadataManager.class is the one and only security enforcement module, which is

always invoked for security decisions when a file is saved to the system.

Figure 12. Save to Database Flow Diagram

Viewing the menu, the user may select the second choice named “Open from

Database.” It is used when the user wants to retrieve a file from those stored in the

system’s database. The first class is called OpenFile.class. This class opens a connection

with the database and retrieves all the files that are available and can be released to the

specific user according to his or her security attributes. User can also input filename

55

criteria so system can search among the releasable files. This operation is performed by

generating queries to the database, according to user’s security attributes and the enforced

security policy. The OpenFile.class is the security enforcement module, which is always

invoked for security decisions when a file is retrieved from the sys tem. The name and the

version (simulated by the date and the time the file entered the database) are presented to

the user who must select one of the files to open. In the case that a user has a high

classification, the files are separated and displayed in categories according to their

classification levels.

Figure 13. Open File Flow Diagram

The user selects a file and its respective filename is sent to the same

OpenFile.class, which retrieves the file from the database, creates a fileTag.class object

for the file, and then gives the user two opening options. The first one is to send the file

to the user’s workstation to directly open the file, where the underlying operating system

will activate the default XML editor or where it will save the incoming file to a local

directory. As it is mentioned in the beginning of this chapter, the user’s operating system

56

is assumed as untrusted. The other opening choice is to send the file to the user’s

workstation to be processed by an applet simulating a distributed XML editor residing in

the server. The first choice gives the user more flexibility but requires a powerful XML

Editor installed in the user’s machine and a well maintained, regarding the security,

operating system. On the other hand, the applet-based XML Editor might restricts the

user’s capabilities but could also provide better security features due to the reduced user

interaction. Furthermore, in an applet-based editor, many customized options, specific to

the organization can be added or removed at the same t ime for all the users.

Figure 14. Open from External Database Flow Diagram

Returning again to the user’s main menu, the third choice, “Open from External

Database,” is used when the user wants to obtain a file that is kept and controlled by

another server. It is assumed that the user’s server is already associated with other

servers, running the same or similar implementation, and they have agreed to share their

XML documents. Obviously, the number and the kind of the associated servers, depends

57

on the policy the organization currently uses and of course can be modified at any time

restricting or allowing access.

If the user selects the third option, the first class called is ImportFile.class, and

this in turn generates a web page on which the user must select the affiliated enclave or

organization whose server is associated with the system. There is also a field where the

user can input the complete filename or any portion of it so that the system can search

among the releasable files. When the submit button is sele cted, the ImportFile.class

initiates a connection with the respective server by calling the Login.class of the

associated server. After a successful connection, an authentication and authorization

occurs, and when they are completed successfully the releas able filenames and their

security classifications are returned. The user’s server has the responsibility to determine

which files the specific user is allowed to obtain. Another possible approach could be to

send the user’s object to the associated server which will be responsible for making the

decision. This approach is not recommended because it could reveal many information

(directly or indirectly) about the users related to a server. The intention is to share only

the documents and not the users’ infor mation.

The ImportFile.class compares the classifications of each file with the user’s

classification and keeps only those files that are releasable to the user. If the user has

inserted a filename or any word previously, the system searches among the file names to

find those that match. Finally, a web page is generated and the results are displayed

through the OpenFile.class, which now assumes control and handles the file similarly to

the previous choice.

The last option in the user’s main menu is “Logout,” which closes all the

connections, deletes any temporary files and kills every object created during the user’s

session. The respective class is named Logout.class, and after a successful execution it

generates a web page displaying a greeting message and links to the home page.

As a future work, many other options can be added to the main menu extending

the performance of the implementation. One of those options could be the capability, for

specifically authorized users, to save a document in an external database.

58

3. Analysis of the Java Servlets

The prototype is implemented using Java servlets running on the latest version of

Apache—Tomcat. Their objectives, an analysis of their functionality, and their main

methods are presented below

a. Login.class

The main objective of the Login.class servlet is to authenticate the user

and to retrieve his or her authorizations. Login.class is the first servlet called after the

user inputs his or her credentials to an HTML form. The Login.class begins by

initializing the ServletConfig.class, which is its super class and thus inherits many

properties. The next step is to open the connection with the third-tier database calling the

JdbcOdbcDriver.class provided by the Sun Microsystems. The connection object created

is attached to the session. The Login.class can accept either a GET or a POST request

from the html file.

The first method called is validateUser, which makes the query to the

database to determine if the username and password entered are contained in the

database. When the database determines that the user’s credentials are valid, a number of

other methods are called in order to retrieve all the user’s information. The user’s

personal and security information and any authorized files are all packed in a

UserBean.class object. Then the startSession method is called. This instantiates a

RequestDispatcher object, initiates a new Session object by attaching the newly created

UserBean object, and transfers the control to the next servlet. In case of any error or if

any exception is thrown, a respective error message is passed to the exitPoint method.

This generates a dynamic HTML page displaying the cause of the problem.

b. UserOptions.class

After successfully authenticating and authorizing the user, the Login.class

passes the control to the UserOptions.class, which creates a page presenting the user’s

information and the available options. The first method called is printData that obtains

the personal and security data from the UserBean object and displays them to th e user.

The next method called is printOptions that creates a drop-down menu displaying the

available options to the user. There is also a link in case the user wants to return to the

previous page.

59

c. UserSelection.class

The user’s selection is submitted via a POST request to the next servlet,

the UserSelection.class. This servlet’s only responsibility is to obtain the selected option

and redirect the control to the appropriate servlet. The doPost method, using a number of

“if” statements, determines what the selected option is and then calls the startSession

method that dispatches a RequestDispatcher object to the respective servlet.

d. ImportToSave.class

The objective of the ImportToSave.class is to create the necessary page so

that the user can input some required information about the file and, of course, the file’s

name. The first method called is the printStandardMetadata that draws a table and

displays the user’s data that will be appended to the file. The user cannot change those

data. However, by calling the dropDownClass method, the user can change the file’s

classification, providing that the user, according to the policy, has an equal or higher

classification. The dropDownClass method displays and permits him or her to choose

only those allowed. In a similar way, the dropDownCountry method allows the user to

select the countries to which this file will be releasable. Adding more methods like the

dropDownClass or the dropDownCountry, an implementing organization can allow its

users to select more options according to its policy.

After the printStandardMetadata method, the control is transferred to the

inputFile method that creates the text field used for inserting the name of the file. This

field is created by the “INPUT TYPE='file' ” HTML tag that also provides a browse

capability to the user. The necessary submit button, labeled “Upload to the server” is also

displayed as well as a “Reset” button. Finally, the exitLinks method is called displaying

the links to cancel the session and to login as another user or to go back to the main menu

page and select another option.

e. SaveFile.class

The name of the file selected by the user is passed to the next servlet,

SaveFile.class that is responsible for retrieving the file from the user and after a few

checks to save it in the server. The method uploadFile is called within a “try-catch” block

in order to be ready to catch any I/O exception that might be thrown by the process. A

temporary directory and a temporary file are created in a specific server area to

60

accommodate the uploaded file. Due to the selected way of uploading the file (through

the “ INPUT TYPE='file' ” HTML tag), the rest of the passed information accompanying

the file are in the beginning of the input stream. The necessary processing will distinguish

and separate those parameters from the file itself. Moreover, at this point, the system will

determine if the name of the file is a valid XML filename, and if the file is starting with

the XML version declaration. After completing those checks successfully, the reading-

writing procedure starts.

After the whole file has been saved to the temporary server area without

any errors or exceptions, the checkingFile method is called. Using the temporary name of

the file, the checkingFile method creates an object of the Echo24.class, which will parse

the XML file. The method parseFile of the Echo24.class is called obtaining the name of

the file and the parsing procedure starts. The parser used by the Echo24.class is a

SAXParser from the SAXParserFactory class of the “javax.xml.parsers” package. While

parsering the file, a FileTags object is created by the parseFile method and returned to

the checkingFile method if no errors are encountered. Returning a “null” FileTags object

means that the parser found validation errors in the document, so an appropriate error

page is created.

When the validation-parsering process is completed without errors, the

FileTags object as well as the UserBean object are passed to the

SecMetadataManager.class. The main task of the SecMetadataManager.class is to

compare the passed FileTags and UserBean objects and to return the decision. In this

specific situation the file is checked to determine the classification in which it will be

stored in the server. The decision can be “auto-downgrade”, “downgrade,” “upgrade” or

“normal.” “Auto-downgrade ” means that the file was characterized by the user with a

higher classification than the specific user is permitted. So the system will automatically

downgrade the classification of the file due to the user’s current logged on level. This

feature enforces the policy that prohibits users to write in a higher level than the level

they are currently logged on and could not be used as a normal procedure. If a user wants

to “downgrade” a file that is already saved in the system with a high classification, he

must log on, at least in the same level as the file. The decision “Upgrade” means that the

user has the authority and asks to save the file with a classification higher than the file

61

already contained in its security attributes. It is actually only an observation of the

system, which will not have any negative impact on the overall security of the system.

The final possible decision is “normal,” which means that the security attributes are in

agreement.

During the above procedure, the system generates appropriate messages to

inform the user about the progress. Assuming that all the procedure are completed

without any errors, the system displays the decision and waits for the user’s confirmation.

That confirmation will trigger the transfer of the control to the next servlet.

f. UpdateDb.class

The next servlet called is UpdateDb.class, which as its name implies, will

mainly update the database. First, the copyFile method is called in order to simulate the

transfer and storage of the file to the database server and to an isolated secure area of the

system. The next method called is the updateDatabase that updates the tables of the

database containing the metadata of the file.

g. OpenFile.class

When the user selects the option “Open File” in the main menu, the

OpenFile.class servlet is called. The main task of this servlet is to coordinate the opening

procedure either for a file saved in the local or in an associated server. The printAvaFiles

method displays all the files that are available to the specific user. Those files are

retrieved from the database through the findFiles method, which opens a connection with

the database and queries the respective table containing the file’s metadata. Similar to the

printAvaFiles method is the printServerAvaFiles method, which is used when the files

are obtained from one of the associated servers. The available files are displayed with

their name and their version, namely, the date and the time saved in the system. The

name of each file is presented as a link. When the user selects a file, the same

OpenFile.class is reactivated but with a different sequence of methods, which are,

determined from conditional “if” statements.

The system provides two different options to the user to open the file. The

first choice is by using the operating system’s incoming file options, which in the case of

Microsoft Windows can be to open the file by the default XML editor or to save it to the

user’s machine for future process. The default application that Windows uses to open a

62

file can be changed at the “Folder Options” contained in the “Tools” menu in the

Windows Explorer. The tab “File Types” will display the list of the file extensions and

the applications to which each of them are associated. When the user has not defined an

application for a specific type of file, the Internet Explorer will be used.

Another choice that the system provides is an apple t-based XML editor

that can be loaded on the user’s machine at the time a file is requested. This capability

simulates a distributed XML editor, provided by the server in the case where the user

does not have one installed locally. It is implemented by calling the MainApplet.class,

which is a Java applet extending the functionality of the Japplet.class contained in the

java.swing package. The name of the file to be opened is passed to the MainApplet.class

applet using the “PARAM NAME=filename VALUE=TheActualFilename “ html tag.

h. ImportFile.class

The ImportFile.class objective is to initiate the import procedure from one

of the associated servers of the system. Its basic method is the inputUrl that creates one

“radio” button for each of the affiliated servers and a text field for the name of the

requested file. The system accepts an empty filename and translates as “find them all.”

The necessary submit and reset buttons are also created and displayed to redirect the

control to the next servlet and to c lear the field, respectively.

i. FindUrl.class

The requested filename and the associated server where the file resides are

passed to the FindUrl.class. This will establish a connection with the server and then

retrieve the file. Using multiple “if -else” statements, the FindUrl.class determines the

progress of the procedure. In the initial stage, the getConnected method is called with the

name of the server as an argument. The getConnected method using a “try-catch” block

encodes the URL of the selected server and calls the ServerLogin.class. The

ServerLogin.class, as the name implies, is a login class dedicated to the authentication

and authorization of the calling server. Its logic is similar to the Login.class mentioned

above, which authenticates and authorizes a user. After an established connection and a

successful authentication, the ServerLogin.class of the associated server retrieves the

available files and transmits their metadata back to the calling server.

63

The FindUrl.class receives the available files from the associated server,

and assuming that a filename (or a portion of it) has been entered, disregards those files

whose names do not match. From the remainder, those that do have matching filename,

the system compares the user’s security attributes to those of each file. If a file has a

higher security classification than the user posses at this session, then the file is removed

from the list. Finally, the remaining list of files, if any, is passed to the OpenFile.class,

which will proceed to the opening procedure as already described. The only difference

now is that instead of the printAvaFiles method, the printServerAvaFiles method will be

called.

j. Logout.class

The Logout.class purpose is to terminate the user’s session. Its basic

method is the processRequest that ends the session by calling the invalidate method of the

HttpSession class of the javax.servlet.http package.

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

V. EXPERIMENTATION

A. DEMONSTRATION SCENARIOS

1. Introduction

The experimentation was conducted on the prototype implementation to

determine its usability and performance characteristics. The potential users of the

prototype can be either “internal” or “external” to a given server. Internal is when the

user is locally connected to the server. An external user is not locally connected to the

server, but is locally connected to a remote server. The demonstration scenarios presented

below are intended to mimic the actual process anticipated in a lar ge organization or in

many associated medium organizations.

2. Scenario 1 – Internal User Stores a Document to the System

The objective of this scenario is to demonstrate the process required when an

internal user authors an XML document and wants to stor e it in the system, making it

available to other users. It is assumed that the user is within the organization, and the file

is saved inside the local machine (either on the hard drive or in any other means

accessible from the local file system).

Figure 15. Login Screen

66

The file could have been created in the local machine using an XML Editor, or

downloaded or copied from a disk. Finally, it is assumed that the user has a browser

installed and has already registered in the system and has acquired a valid username and

password and thus can be authenticated by the system. The screen shots shown in this

scenario employed the Netscape Navigator.

Figure 16. First Option in the Main Menu

The authenticated user selects the first option (Save to Database) in the main

menu after the successful authentication and authorization of the system. The “Save to

Database” screen is generated waiting for the user’s selections.

Selecting the “Browse” button, access to the local file system is provided to the

user in case the exact file position is not known. The allowed file classifications

presented to the user cannot be higher than the user’s classification.

67

Figure 17. Browse Local File System

Figure 18. Uploading and Parsing File Process

68

The system generates messages showing the progress and requests the user’s

confirmation to proceed to the final step of updating the database if there are not any

errors or exceptions.

3. Scenario 2 – Internal User Retrieves a Document from the System

This scenario demonstrates the ability of the system to provide an authorize d user

with one of the files stored in the database. It is assumed that the user is within the

organization and has installed an XML editor or the Java Virtual Machine (VM) on his or

her own machine. Moreover, it is assumed that the user has customized the local

operating system to initiate the installed XML Editor when an XML file is received. The

screen shots shown in this scenario were obtained from Microsoft Internet Explorer 6.0.

Figure 19. Second Option in the Main Menu

When the second option from the main menu is selected, the available files to the

user are displayed. They are categorized depending on their classification, providing that

the user has a high enough classification to allow him or her to view many layers.

69

Figure 20. Available Files to Open

Figure 21. Choose an Editor Screen

Each file is a link, which, when selected initiates the next page presenting the two

options of how that file can be opened. If the user chooses the option of the installed

XML Editor, the operating system presents the available options, which either opens the

file using the default Editor or saves the file locally for future use.

70

Figure 22. XMLMind Editor Opened the File

If the user chooses to open the file using the applet-based XML Editor and

providing that the Java VM is installed, the applet is loaded and initiated and presents the

selected file.

71

Figure 23. Applet Based Editor Opened the File

4. Scenario 3 – External User Retrieves a Document from the System

This scenario demonstrates the ability of the system to provide one of the files

stored in the database to an authorized external user. It is assumed that the user belongs to

one of the associated organizations or enclaves that share their documents. After the

desired file is retrieved from the associated server, the procedure is similar to the

previous. Thus an XML editor or the Java Virtual Machine (VM) must be installed on the

user’s local machine.

72

Figure 24. Third Option in the Main Menu

Figure 25. Choose an Associated Server Screen

73

The user selects the server, in which the file resides as well as the name of the file

or at least the beginning of it. The system attempts a connection with the selected server

as soon as the “Submit” button is pressed. Upon a successful connection between the two

servers, an authentication and authorization process is started. When comple ted without

errors, the available filenames are retrieved and sent back to the requested server for

further processing. If that processing results in a file that matches, the inserted filename

can be released to that specific user and a new request is sent again to the associated

server to pass the file itself. In case the processing results in more than one file, then all

of them are presented to the user to select.

Figure 26. Available Files on an Associated Server

From the point where the file itself is retrieved from the associated server, the

procedure is exactly the same as the opening procedure when the file is saved locally.

74

B. SUBJECTIVE PERFORMANCE EVALUATION

The prototype development and implementation is based on the Microsoft

Windows 2000 operating sys tem, the Java 2 Enterprise Edition integrated platform and

the Apache-Tomcat web server. The Microsoft Access simulates the database

management system. Various XML Editors such as “XMLSpy,” “XMLMind” and Web

browsers, such as the Internet Explorer and Netscape Navigator are tested and used to

develop and test the system. Java platform, Apache web server and Netscape are freeware

and open-source products making them easily customized to the specific needs of every

application. Almost all of them (except Micr osoft Access) have adequate capabilities to

support general requirements to manipulate, distribute and store XML documents.

However, because the system design extensively uses security markings that are

represented as objects, and because the system itself bases its decisions on those objects,

a high assurance operating system must be used in an operational implementation. The

high assurance operating system must be used to accommodate at least the web server

and the DBMS but it is also highly recommended for the user’s environment. When the

performance requirements are similar to those used in the electronic business world the

main concern is focused on the security of the underlying operating system, which

supports the security of the entire implementatio n.

The Apache-Tomcat web server has a suitable overall performance that has made

it one of the most popular and most reliable products in the highly demanding business

world. Its open-source base and its efficiency in almost all the operating systems make it

a good solution. Furthermore, because Apache-Tomcat is coded and based in Java, any

application using the same programming language creates a better combination with even

better performance. Java acquires a large number of capabilities and advantages th at can

expand and can improve the efficiency of the implemented application. Due to the object-

oriented structure of Java, any new features or improvements can be easily attached in the

future, keeping the entire solution always updated.

Regarding the spec ific tools an end user must use, such as web browsers or XML

Editors, most of the commercial products tested were found to provide acceptable

performance. However, there would be even better results if an integrated product could

75

perform both jobs (browsing the web and editing an XML document) with the same high

level of efficiency and performance. This may be a worthwhile area for research and

development in the future.

C. CONCLUSIONS - LESSONS LEARNED

XML is one of the most promising and rewarding technologies of today’s

demanding world. Especially when the environment or the platform is object oriented,

XML technology can be easily integrated and help to increase overall performance. I

have shown that by using XML and its metadata, developers cannot only manipulate

documents fast and efficiently but can also do so securely and with flexibility and

interoperability.

The use of XML inside a large organization can improve the performance and the

efficiency in the production, distribution and storage of doc uments while sharing those

documents among various enclaves. Furthermore, XML itself provides the capability to

attach security attributes to granular elements. This capability makes XML much more

advantageous than HTML. I have shown that many XML security concerns can be

addressed by using current security technologies. Encryption, Digital Certificates, Digital

Signatures are among those technologies that can assure the integrity and security of

XML documents.

A highly secure operating system must be selected to accommodate and to

support the main components of the implementation. Even though Microsoft virtually

dominates the market and improves the security features of its products every day, a few

other choices (Unix, Solaris) can achieve much better security. Starting from an operating

system with advanced security capabilities, an implementing organization can select

among the various existing frameworks. Almost all the major vendors of the market

(Microsoft, Sun Microsystems, Oracle, etc.) have developed technologies that allow

programmers and their organizations to use XML and its features. It is only a matter of

the specific organizational requirements to determine which framework to use, due to the

fact that all of the frameworks provide interoper ability and extensibility through XML.

Sun’s Microsystems Java 2 Enterprise Edition and Microsoft’s “dot “ NET framework

are the most powerful, robust and complete frameworks to support and implement an

efficient and secure solution.

76

Finally, a great varie ty of products and applications, such as Web browsers, Web

servers, XML Editors and Database management systems, can be used on top of the

selected framework to support specific needs. Many of those products integrate broad

capabilities and provide fairly complete solutions. The final selection of those products

should be according to the specifications and requirements within the organization.

77

APPENDIX A. APPLICATION PROGRAMMING INTERFACE (API)

The Application Programming Interface (API) presented on the next pages is

created by the “javadoc” utility, provided by the Sun Microsystems Java 2 Standard

Edition.

78

Package dbsection

Class Summary

DBConnectionBean This class implements a bean that is used for many other classes
to process all transactions with the backend database.

Echo24 The class Echo24 is responsible for parsering the passed file and
to extract all of its elements and attributes.

FileTags
The class FileTags is responsible for creating an object
containing all the security elements and attributes of a specific
file.

FindUrl

The FindUrl class defines a servlet that is responsible for
connecting the system with the requested server, for retrieving
the releasable files from that server and for deciding which of
those files the user is allowed to access.

ImportFile
The ImportFile class defines a servlet that is responsible for
creating a web page to help the user input the file and to help the
server know where that file is located in order to open it.

ImportToSave
The ImportToSave class defines a servlet that is responsible for
creating a web page to help the user input the file to be saved, as
well as some information related to the file

Login The class Login defines a servlet that is responsible for
authenticating the users trying to login.

Logout This class defines a servlet that logs out a user and ends his or
her session.

MetaTags The MetaTags class codes the tags of a file as an object.

OpenFile
The class OpenFile defines a servlet that is responsible for
opening any file a user may select. Either the file is saved locally
or in another server.

SaveFile
The SaveFile class is responsible for uploading the file from the
user's machine to a temporary area of the system and to check
and parse the file.

SecMetadataManager
The class SecMetadataManager is responsible for comparing the
received UserBean and FileTags objects and to make the
necessary decision according to the policy.

ServerLogin The class ServerLogin defines a servlet that is responsible for
authenticating associated servers trying to login.

UpdateDb The UpdateDb class receives an already parsed file, updates the
database, and saves the file in the "secure" server area.

79

UserBean This class defines a bean used to maintain the user's data during
the session.

UserOptions
The class UserOptions creates a page displaying the user's
information (personal and security) and the available options for
that session.

UserSelection
The UserSelection class is responsible for getting the user's
selection from the main menu and for redirecting the control to
the respective servlet for further processing

80

Hierarchy for Package dbsection

Class Hierarchy

o class java.lang.Object
o class dbsection.CalendarBean
o class dbsection.CommonData
o class java.awt.Component (implements
java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

o class java.awt.Container
o class java.awt.Window (implements
javax.accessibility.Accessible)

o class java.awt.Frame (implements
java.awt.MenuContainer)

o class javax.swing.JFrame
(implements javax.accessibility.Accessible,
javax.swing.RootPaneContainer,
javax.swing.WindowConstants)

o class
dbsection.TextSamplerDemo

o class dbsection.CustomerBean
o class dbsection.DBConnectionBean
o class org.xml.sax.helpers.DefaultHandler (implements
org.xml.sax.ContentHandler, org.xml.sax.DTDHandler,
org.xml.sax.EntityResolver, org.xml.sax.ErrorHandle r)

o class dbsection.Echo24
o class dbsection.FileTags
o class javax.servlet.GenericServlet (implements java.io.Serializable,
javax.servlet.Servlet, javax.servlet.ServletConfig)

o class javax.servlet.http.HttpServlet (implements
java.io.Serializable)

o class dbsection.CreateFile (implements
java.io.Serializable)
o class dbsection.FindUrl (implements
java.io.Serializable)
o class dbsection.ImportFile
o class dbsection.ImportToSave (implements
java.io.Serializable)
o class dbsection.ListReservations
o class dbsection.Login
o class dbsection.Logout
o class dbsection.OpenFile
o class dbsection.SaveFile (implements
java.io.Serializable)
o class dbs ection.ServerLogin
o class dbsection.UpdateDb

81

o class dbsection.UserOptions
o class dbsection.UserSelection

o class dbsection.MetaTags
o class dbsection.SecMetadataManager
o class dbsection.ServletUtilities
o class dbsection.UserBean

dbsection
Class DBConnectionBean

java.lang.Object
 |
 +-dbsection.DBConnectionBean

public class DBConnectionBean
extends java.lang.Object
This class implements a bean that is used for many other classes to process all
transactions with the backend database. It is a unique point of connection with the
database, using the JDBC API.

Field Summary
private
 java.sql.Connection con

82

private boolean connected

private
 java.lang.String driver

private boolean loaded

private
 java.lang.String password

private
 java.lang.String primaryKeyQuery

private
 java.lang.String query

private
 java.sql.Statement statement

private
 java.lang.String update

private
 java.lang.String url

private
 java.lang.String user

Constructor Summary

DBConnectionBean()

Method Summary
 void DBConnectionBean()

 The default constructor of the calss that sets the
appropriate url and driver for the database

 int getPrimaryKey()
 Obtains a new primary key in the table specified by the
current primary.

 java.sql.ResultSet getQuery()
 Queries the DB and return the result ResultSet object

 int getUpdate()
 Executes an update query.

 boolean isClose()
 This method closes the connection with the database

private boolean isConnected()

83

 Establish the connection with the DB.
 boolean isLoaded()

 Loads the driver
 java.sql.ResultSet query(java.lang.String query)

 Sets the query string.
 void setDriver(java.lang.String newDriver)

 Sets the driver for the database
 void setPassword(java.lang.String newPassword)

 Sets the DB password.
 void setPrimaryKeyQuery(java.lang.String newPrimaryKeyQuery)

 Sets the primary key for the query.
 void setQuery(java.lang.String query)

 Sets the query.
 void setUpdate(java.lang.String update)

 Sets the update query.
 void setUrl(java.lang.String newUrl)

 Set the URL of the database.
 void setUser(java.lang.String newUser)

 Sets the DB user name.
 int update(java.lang.String updateQuery)

 Executes an update query by calling the getUpdate method

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Field Detail
loaded

private boolean loaded

connected

private boolean connected

url

private java.lang.String url

driver

84

private java.lang.String driver

user

private java.lang.String user

password

private java.lang.String password

con

private java.sql.Connection con

statement

private java.sql.Statement statement

query

private java.lang.String query

update

private java.lang.String update

primaryKeyQuery

private java.lang.String primaryKeyQuery
Constructor Detail
DBConnectionBean

public DBConnectionBean()
Method Detail
DBConnectionBean

public void DBConnectionBean()
The default constructor of the calss that sets the appropriate url and driver for the
database
Returns:
void.

setUrl

85

public void setUrl(java.lang.String newUrl)
Set the URL of the database.
Parameters:
newUrl - The new URL
Returns:
void.

setDriver

public void setDriver(java.lang.String newDriver)
Sets the driver for the database
Parameters:
newDriver - The new driver.
Returns:
void.

setUser

public void setUser(java.lang.String newUser)
Sets the DB user name.
Parameters:
newUser - The new user name.
Returns:
void.

setPassword

public void setPassword(java.lang.String newPassword)
Sets the DB password.
Parameters:
newPassword - The new password.
Returns:
void.

isLoaded

public boolean isLoaded()
Loads the driver
Returns:
True if the driver is loaded successfully

isConnected

private boolean isConnected()
Establish the connection with the DB.
Returns:

86

True if the connection is established.

query

public java.sql.ResultSet query(java.lang.String query)
Sets the query string.
Parameters:
query - The new query string.
Returns:
A ResultSet object containing the results of the query

getQuery

public java.sql.ResultSet getQuery()
Queries the DB and return the result ResultSet object
Returns:
A ResultSet object containing the results of the query

setQuery

public void setQuery(java.lang.String query)
Sets the query.
Parameters:
query - The new query.
Returns:
void.

setUpdate

public void setUpdate(java.lang.String update)
Sets the update query.
Parameters:
update - The update query.
Returns:
void.

update

public int update(java.lang.String updateQuery)
Executes an update query by calling the getUpdate method
Parameters:
updateQuery - the update query
Returns:
An integer representing the primary key or -1 if an error happens.

getUpdate

87

public int getUpdate()
Executes an update query.
Returns:
An integer representing the primary key or -1 if an error happens.

isClose
public boolean isClose()
This method closes the connection with the database
Returns:
A boolean true if the connection is closed successfully

setPrimaryKeyQuery

public void setPrimaryKeyQuery(java.lang.String newPrimaryKeyQuery)
Sets the primary key for the query.
Parameters:
newPrimaryKeyQuery - The new primary key for that query
Returns:
void.

getPrimaryKey

public int getPrimaryKey()
Obtains a new primary key in the table specified by the current primary. The result set of
the ordered set of existing primary keys is examined sequentially, until the smalest non
used positive integer is found. This method may only be used for tables using integers as
a primary key.
Returns:
the new primary key or -1 if an error happens.
dbsection
Class Echo24

java.lang.Object
 |
 +-org.xml.sax.helpers.DefaultHandler
 |
 +-dbsection.Echo24
All Implemented Interfaces:
org.xml.sax.ContentHandler, org.xml.sax.DTDHandler, org.xml.sax.EntityResolver,
org.xml.sax.ErrorHandler

public class Echo24
extends org.xml.sax.helpers.DefaultHandler
The class Echo24 is responsible to parse the passed file and extract all of its elements and
attributes

88

Field Summary
private java.io.File file

private
 dbsection.FileTags fileTags

private int indentLevel

private
 java.lang.String indentString

private int index

private boolean nonusSecElementFounf

private
static java.io.Writer out

private
 java.lang.String[] parsedFile

private
 java.lang.String secCategory

private boolean secElementsFound

private boolean usSecElementFound

Constructor Summary

Echo24()
 The default constructor of the class

Method Summary
 void characters (char[] buf, int offset, int len)

private void emit(java.lang.String s)

 void endDocument()

 void endElement(java.lang.String namespaceURI,

java.lang.String sName, java.lang.String qName)

89

 java.io.File getFile ()

 Gets the file contained in the object
 java.lang.String[] getParsedFile()

 Gets the parsed file contained in the object
 dbsection.FileTags mainNew(java.lang.String argv)

 This method parses the file in the passed URL by using one
of the SAXParsers from the SAXParserFactory

private void nl()

 dbsection.FileTags parseFile (java.lang.String filename)
 This method parses the file by using one of the SAXParsers
from the SAXParserFactory

 void setDocumentLocator(org.xml.sax.Locator l)

 void startDocument()

 void startElement(java.lang.String namespaceURI,
java.lang.String lName, java.lang.String qName,
org.xml.sax.Attributes attrs)

Methods inherited from class org.xml.sax.helpers.DefaultHandler
endPrefixMapping, error, fatalError, ignorableWhitespace, notationDecl,
processingInstruction, resolveEntity, skippedEntity, startPrefixMapping,
unparsedEntityDecl, warning

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Field Detail
out

private static java.io.Writer out

indentString

private java.lang.String indentString

indentLevel

90

private int indentLevel

parsedFile

private java.lang.String[] parsedFile

file

private java.io.File file

fileTags

private dbsection.FileTags fileTags

secElementsFound

private boolean secElementsFound

usSecElementFound

private boolean usSecElementFound

nonusSecElementFounf

private boolean nonusSecElementFounf

secCategory

private java.lang.String secCategory

index

private int index
Constructor Detail
Echo24

public Echo24()
The default constructor of the class
Method Detail
parseFile

public dbsection.FileTags parseFile (java.lang.String filename)
This method parses the file by using one of the SAXParsers from the SAXParserFactory
Parameters:
filename - The name of the file to be parsed

91

Returns:
A FileTags object containing all the security tags of the passed file
Throws:
java.lang.Throwable - In case of an error during the process

mainNew

public dbsection.FileTags mainNew(java.lang.String argv)
This method parses the file in the passed URL by using one of the SAXParsers from the
SAXParserFactory
Returns:
A FileTags object containing all the security tags of the passed file
Throws:
java.lang.Throwable - In case of an error during the process

getFile

public java.io.File getFile()
Gets the file contained in the object
Returns:
The file contained in the object

getParsedFile

public java.lang.String[] getParsedFile ()
Gets the parsed file contained in the object
Returns:
The file parsed contained in the object in an array of String

setDocumentLocator

public void setDocumentLocator(org.xml.sax.Locator l)
Specified by:
setDocumentLocator in interface org.xml.sax.ContentHandler
Overrides:
setDocumentLocator in class org.xml.sax.helpers.DefaultHandler

startDocument

public void startDocument()
 throws org.xml.sax.SAXException
Specified by:
startDocument in interface org.xml.sax.ContentHandler
Overrides:
startDocument in class org.xml.sax.helpers.DefaultHandler
org.xml.sax.SAXException

92

endDocument

public void endDocument()
 throws org.xml.sax.SAXException
Specified by:
endDocument in interface org.xml.sax.ContentHandler
Overrides:
endDocument in class org.xml.sax.helpers.DefaultHandler
org.xml.sax.SAXException

startElement

public void startElement(java.lang.String namespaceURI,
 java.lang.String lName,
 java.lang.String qName,
 org.xml.sax.Attributes attrs)
 throws org.xml.sax.SAXException
Specified by:
startElement in interface org.xml.sax.ContentHandler
Overrides:
startElement in class org.xml.sax.helpers.DefaultHandler
org.xml.sax.SAXException

endElement

public void endElement(java.lang.String namespaceURI,
 java.lang.String sName,
 java.lang.String qName)
 throws org.xml.sax.SAXException
Specified by:
endElement in interface org.xml.sax.ContentHandler
Overrides:
endElement in class org.xml.sax.helpers.DefaultHandler
org.xml.sax.SAXException

characters

public void characters(char[] buf,
 int offset,
 int len)
 throws org.xml.sax.SAXException
Specified by:
characters in interface org.xml.sax.ContentHandler
Overrides:
characters in class org.xml.sax.helpers.DefaultHandler
org.xml.sax.SAXException

93

emit

private void emit(java.lang.String s)
 throws org.xml.sax.SAXException
org.xml.sax.SAXException

nl

private void nl()
 throws org.xml.sax.SAXException
org.xml.sax.SAXException

dbsection
Class FileTags

java.lang.Object
 |
 +-dbsection.FileTags

public class FileTags
extends java.lang.Object
The class FileTags is responsible to create an object containing all the security elements
and attributes of the specific file that belongs

Field Summary
(package private)
 java.io.File file

(package private)
 java.lang.String filename

(package private)
 java.lang.String[] secAttribute

(package private)
 java.lang.String[] secAttributeValue

94

(package private)
 java.lang.String[] secElement

(package private)
 java.lang.String[] secElementValue

Constructor Summary

FileTags(java.io.File newFile)
 The default constructor of the class receives the passed File object and initializes
the parameter for itself

Method Summary
 void checkAttribute(java.lang.String category,

java.lang.String newElement, java.lang.String newAttribute,
java.lang.String newAttributeValue)
 Checks the passed attribute if it is a security attribute

 boolean checkElement(java.lang.String category,
java.lang.String newElement,
java.lang.String newElementValue)
 Checks the passed element if it is a security element

 java.lang.String[] getSecAttributes()
 Gets file's security attributes contained in the object

 java.lang.String[] getSecAttributeValues()
 Gets file's security attributes values contained in the object

private void setFileName(java.lang.String newFileName)
 Sets the name of the file

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Field Detail
filename

java.lang.String filename

secElement

java.lang.String[] secElement

secElementValue

java.lang.String[] secElementValue

95

secAttribute

java.lang.String[] secAttribute

secAttributeValue

java.lang.String[] secAttributeValue

file

java.io.File file
Constructor Detail
FileTags

public FileTags(java.io.File newFile)
The default constructor of the class receives the passed File object and initializes the
parameter for itself
Parameters:
newFile - The File object on which that FileTags object is referred to
Method Detail
setFileName

private void setFileName(java.lang.String newFileName)
Sets the name of the file
Parameters:
newFileName - The new filename
Returns:
void

getSecAttributes

public java.lang.String[] getSecAttributes()
Gets file's security attributes contained in the object
Returns:
The file's security attributes contained in the object

getSecAttributeValues

public java.lang.String[] getSecAttributeValues()
Gets file's security attributes values contained in the object
Returns:
The file's security attributes values contained in the object

checkElement

96

public boolean checkElement(java.lang.String category,
 java.lang.String newElement,
 java.lang.String newElementValue)
Checks the passed element if it is a security element
Parameters:
category - The element's category
newElement - The element to be checked
newElementValue - The element's value
Returns:
A boolean true if the element is a security element

checkAttribute

public void checkAttribute(java.lang.String category,
 java.lang.String newElement,
 java.lang.String newAttribute,
 java.lang.String newAttributeValue)
Checks the passed attribute if it is a security attribute
Parameters:
category - The attribute's category
newElement - The element containing the attribute
newAttribute - The attribute to be checked
newAttributeValue - The attribute's value
Returns:
void

97

dbsection
Class FindUrl

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.FindUrl
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class FindUrl
extends javax.servlet.http.HttpServlet
implements java.io.Serializable
The FindUrl class defines a servlet that is responsible to connect the system with the
requested server, to retrieve the realesable files from that server and to decide which of
those files the user is allowed to access
See Also:
Serialized Form

Field Summary
private java.lang.String authentication

private boolean decision

98

private java.io.File file

private static dbsection.FileTags fileTags

private java.lang.String localServer

private
static dbsection.SecMetadataManager manager

private java.util.Vector matchedFiles

private java.lang.String npsServer

private java.io.PrintWriter out

private java.lang.String permission

private
 javax.servlet.http.HttpServletRequest req

private java.lang.String ReqFilename

private
 javax.servlet.http.HttpServletResponse res

private java.lang.String selectedUrl

private java.lang.String selUrl

private java.lang.String server

private java.util.Vector serverFoundFiles

private java.lang.String thisServer

private java.lang.String thisServerPassword

private dbsection.UserBean user

Fields inherited from class javax.servlet.http.HttpServlet

99

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

FindUrl()

Method Summary
private
 java.util.Vector checkIfExist(java.lang.String fileName)

private void checkingFile (java.lang.String filename)

 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
 Processing user's GET request by simply passing the control
to the doPost.

 void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
 Processing user's POST request.

private void exitLinks()

private
 java.lang.String[] findVersion(java.lang.String fullName)

private void getConnected(java.lang.String server)

private void printData()

private void startSession()

 Starts a new session after a customer is correctly
authenticated.

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,
getServletContext, getServletInfo, getServletName, init, init, log, log

100

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Field Detail
user

private dbsection.UserBean user

out

private java.io.PrintWriter out

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res

selUrl

private java.lang.String selUrl

selectedUrl

private java.lang.String selectedUrl

permission

private java.lang.String permission

authentication

private java.lang.String authentication

fileTags

private static dbsection.FileTags fileTags

manager

private static dbsection.SecMetadataManager manager

101

decision

private boolean decision

file

private java.io.File file

thisServer

private java.lang.String thisServer

thisServerPassword

private java.lang.String thisServerPassword

serverFoundFiles

private java.util.Vector serverFoundFiles

matchedFiles

private java.util.Vector matchedFiles

npsServer

private java.lang.String npsServer

localServer

private java.lang.String localServer

server

private java.lang.String server

ReqFilename

private java.lang.String ReqFilename
Constructor Detail
FindUrl

public FindUrl()
Method Detail

102

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - The client's request.
response - The response to the client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doPost

public void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws java.io.IOException
Processing user's POST request.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Parameters:
req - the client request.
res - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

getConnected

private void getConnected(java.lang.String server)

startSession

private void startSession()
 throws java.lang.Exception
Starts a new session after a customer is correctly authenticated.
Returns:
void.

103

Throws:
Exception.
java.lang.Exception

checkIfExist

private java.util.Vector checkIfExist(java.lang.String fileName)

findVersion

private java.lang.String[] findVersion(java.lang.String fullName)

checkingFile

private void checkingFile(java.lang.String filename)

exitLinks

private void exitLinks()

printData

private void printData()

104

dbsection
Class ImportFile

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.ImportFile
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class ImportFile
extends javax.servlet.http.HttpServlet
The ImportFile class defines a servlet that is responsible to create a web page to help user
input the file and the server where that file is located in order to open it.
See Also:
Serialized Form

Field Summary
private java.util.Vector avaFiles

private dbsection.UserBean freshuser

private java.io.PrintWriter out

private
 javax.servlet.http.HttpServletRequest req

105

private

 javax.servlet.http.HttpServletResponse res

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

ImportFile ()

Method Summary
 void doPost(javax.servlet.http.HttpServletRequest req,

javax.servlet.http.HttpServletResponse res)
 Processing user's POST request.

privat
e void exitLinks()

 Displays the available links to direct control in another servlet, in
case the user wants to cancel this procedure

privat
e void inputUrl()

 Creates the necessary radio buttons for the server's selection, the
text field to get the file and the buttons to clear the field or to submit the
filename

privat
e void printData()

 Prints the user's personal and Security data retrieved from the
database that contained in the UserBean object

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doGet, doOptions, doPut, doTrace, getLastModified, service,

service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

106

wait, wait, wait

Field Detail
freshuser

private dbsection.UserBean freshuser

avaFiles

private java.util.Vector avaFiles

out

private java.io.PrintWriter out

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res
Constructor Detail
ImportFile

public ImportFile ()
Method Detail
doPost

public void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws java.io.IOException
Processing user's POST request.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Parameters:
req - the client request.
res - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In cas e of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

exitLinks

107

private void exitLinks()
Displays the available links to direct control in another servlet, in case the user

wants to cancel this procedure
Returns:
void.

inputUrl

private void inputUrl()
Creates the necessary radio buttons for the server's selection, the text field to get

the file and the buttons to clear the field or to submit the filename
Returns:
void.

printData

private void printData()
Prints the user's personal and Security data retrieved from the database that

contained in the UserBean object
Returns:
void.

108

dbsection

Class ImportToSave

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.ImportToSave
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class ImportToSave
extends javax.servlet.http.HttpServlet
implements java.io.Serializable
The ImportToSave class defines a servlet that is responsible to create a web page

to help user input the file to be saved, as well as some information related to the file
See Also:
Serialized Form

Field Summary
private java.util.Vector avaFiles

private java.lang.String[] classifi

private java.lang.String[] countries

109

private java.io.PrintWriter out

private
 javax.servlet.http.HttpServletRequest req

private

 javax.servlet.http.HttpServletRespons
e

res

private dbsection.UserBean sessionuser

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

ImportToSave ()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
 Processing user's GET request by simply passing the control to
the doPost.

 void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
 Processing user's POST request.

private
 java.lang.Strin
g

dropDownClass(java.lang.String userClass)
 This method creates the allowed options in the drop down list
for the classification selection of the file

private
 java.lang.Strin
g

dropDownCountry(java.lang.String userCountry)
 This method creates the allowed options in the drop down list
for the releasable countries of the file

private
 void exitLinks()

 Displays the available links to direct control in another servlet,
in case the user wants to cancel this procedure

private
 void inputFile ()

 Creates the necessary text field to help the user to input the file
and the buttons to clear the field or to submit the filename

110

private
 void printStandardMetadata()

 Prints the user's personal and security data that will appended
to the file as its metadata.

private
 void tableRow(java.lang.String firstColumn,

java.lang.String secondColumn, java.lang.String thirdColumn,
java.lang.String forthColumn)
 This method displays the passed parameters in a table row with
specific dimensions

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
sessionuser

private dbsection.UserBean sessionuser

avaFiles

private java.util.Vector avaFiles

out

private java.io.PrintWriter out

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res

classifi

private java.lang.String[] classifi

111

countries

private java.lang.String[] countries
Constructor Detail
ImportToSave

public ImportToSave()
Method Detail
doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - The client's request.
response - The response to the client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doPost

public void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's POST request.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Parameters:
req - the client request.
res - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

112

exitLinks

private void exitLinks()
Displays the available links to direct control in another servlet, in case the user

wants to cancel this procedure
Returns:
void.

inputFile

private void inputFile ()
Creates the necessary text field to help the user to input the file and the buttons to

clear the field or to submit the filename
Returns:
void.

printStandardMetadata

private void printStandardMetadata()
Prints the user's personal and security data that will appended to the file as its

metadata.
Returns:
void.

dropDownClass

private java.lang.String dropDownClass(java.lang.String userClass)
This method creates the allowed options in the drop down list for the

classification selection of the file
Parameters:
userClass - The classification of the user, which will be the maximum allowed for

the file
Returns:
The allowed classifications for the file

dropDownCountry

private java.lang.String dropDownCountry(java.lang.String userCountry)
This method creates the allowed options in the drop down list for the releasable

countries of the file
Returns:
The allowed countries for the file

tableRow

private void tableRow(java.lang.String firstColumn,

113

 java.lang.String secondColumn,
 java.lang.String thirdColumn,
 java.lang.String forthColumn)
This method displays the passed parameters in a table row with specific

dimensions
Parameters:
firstColumn - The first column of the row
secondColumn - The second column of the row
thirdColumn - The third column of the row
Returns:
void

dbsection

Class Login

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.Login
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class Login
extends javax.servlet.http.HttpServlet
The class Login defines a servlet that is responsible to authenticate users trying to

login. Upon positive authentication, a new user session is created with two attached
beans: the customer bean and the database connection module.

See Also:
Serialized Form

Field Summary
private java.util.Vector avaFiles

private java.sql.Connection connection

private int CONNECTION_ERROR

private java.lang.String curServiceClass

private java.lang.String curServiceName

114

private java.lang.String curServicePos

private java.lang.String curUserCountryId

private int curUserId

private

 dbsection.DBConnectionBean dbBean

private java.lang.Exception dbe

private int DRIVER_ERROR

private int INVALID_USER

private java.io.PrintWriter out

private int QUERY_ERROR

private int QUERY_ERROR_EXC

private
 javax.servlet.http.HttpServletRequest request

private

 javax.servlet.http.HttpServletRespons
e

response

private java.sql.ResultSet rs

private java.sql.ResultSet rs2

private dbsection.UserBean user

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

115

Constructor Summary

Login()

Method Summary
private

 dbsection.UserBea
n

createUser()
 Creates a new userBean object from the information
retrieved from the database.

 void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Processing user's GET reques t.

 void doPost(javax.servlet.http.HttpServletRequest request
, javax.servlet.http.HttpServletResponse response)
 Processing user's POST request by simply passing the
control to the doGet.

private
 void exitPoint(int exitCondition)

 Defines several types of exit conditions depending on the
specified error

private
 void findFiles(java.lang.String service,

java.lang.String position, java.lang.String clearance,
java.lang.String country)
 Finds the files that are available to a specific user according
to his/her security authorizations

private
 void findNamePos (java.lang.String name,

java.lang.String password)
 Finds the Security authorizations of a valid user

 void init(javax.servlet.ServletConfig config)
 One-time initilization of the servlet.

private
 void startSession()

 Starts a new session after a user is succefully authenticated.
private

 void validateUser(java.lang.String name,
java.lang.String password)
 Authenticates a user with the given username & password

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, log, log

116

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
DRIVER_ERROR

private final int DRIVER_ERROR
See Also:
Constant Field Values

CONNECTION_ERROR

private final int CONNECTION_ERROR
See Also:
Constant Field Values

QUERY_ERROR

private final int QUERY_ERROR
See Also:
Constant Field Values

QUERY_ERROR_EXC

private final int QUERY_ERROR_EXC
See Also:
Constant Field Values

INVALID_USER

private final int INVALID_USER
See Also:
Constant Field Values

request

private javax.servlet.http.HttpServletRequest request

response

private javax.servlet.http.HttpServletResponse response

connection

117

private java.sql.Connection connection

out

private java.io.PrintWriter out

rs

private java.sql.ResultSet rs

rs2

private java.sql.ResultSet rs2

dbBean

private dbsection.DBConnectionBean dbBean

curServiceName

private java.lang.String curServiceName

curServicePos

private java.lang.String curServicePos

curServiceClass

private java.lang.String curServiceClass

curUserCountryId

private java.lang.String curUserCountryId

curUserId

private int curUserId

dbe

private java.lang.Exception dbe

user

private dbsection.UserBean user

118

avaFiles

private java.util.Vector avaFiles
Constructor Detail
Login

public Login()
Method Detail
init

public void init(javax.servlet.ServletConfig config)
 throws javax.servlet.ServletException
One-time initilization of the servlet. If the Connection Module is not yet initiated,

it ensures its creation.
Specified by:
init in interface javax.servlet.Servlet
Overrides:
init in class javax.servlet.GenericServlet
Parameters:
config - local server configuration parameters.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered

doPost

public void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's POST request by simply passing the control to the doGet.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Parameters:
request - The client's request.
response - The response to the client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doGet

119

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - the client request.
response - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

validateUser

private void validateUser(java.lang.String name,
 java.lang.String password)
Authenticates a user with the given username & password
Parameters:
name - The user's username.
password - The user's password.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a servlet error encountered

findNamePos

private void findNamePos (java.lang.String name,
 java.lang.String password)
Finds the Security authorizations of a valid user
Parameters:
name - The user's username.
password - The user's password.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a servlet error encountered

findFiles

120

private void findFiles(java.lang.String service,
 java.lang.String position,
 java.lang.String clearance,
 java.lang.String country)
Finds the files that are available to a specific user according to his/her security

authorizations
Parameters:
service - The user's service
position - The user's position in his or her service
clearance - The user's clearance (Unclassified, Classified etc.)
country - The user's country
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of an I/O error encountered

startSession

private void startSession()
 throws java.lang.Exception
Starts a new session after a user is succefully authenticated.
Returns:
void
Throws:
java.lang.Exception - In case of an invalid situation is encountered

createUser

private dbsec tion.UserBean createUser()
 throws java.lang.Exception
Creates a new userBean object from the information retrieved from the database.
Returns:
A UserBean object containg all the user's data is returned.
Throws:
java.lang.Exception - In the case of an invalid data

exitPoint

private void exitPoint(int exitCondition)
Defines several types of exit conditions depending on the specified error
Parameters:
exitCondition - That integer specifies the error causes the exit.
Returns:
void.

121

dbsection

Class Logout

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.Logout
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class Logout
extends javax.servlet.http.HttpServlet
This class defines a servlet that logout a user and end his/her session.
See Also:
Serialized Form

Field Summary
private dbsection.CustomerBean customer

private

 dbsection.DBConnectionBean dbBean

private int ERROR_SESSION

private java.io.PrintWriter out

private java.lang.String output

private
 javax.servlet.http.HttpServletRequest request

122

private
 javax.servlet.http.HttpServletRespons
e

response

private java.sql.ResultSet rs

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

Logout()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
 Processing user's GET request.

 void doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Processing user's POST request by simply passing the control to
the doGet.

privat
e void exitLinks()

 Displays the available links to direct control in another page, in
case the user wants to discontinue the session

privat
e void processRequest()

 Processing the request for logging the user out and terminating the
current user session.

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, servic e

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

123

wait, wait, wait

Field Detail
ERROR_SESSION

private final int ERROR_SESSION
See Also:
Constant Field Values

request

private javax.servlet.http.HttpServletRequest request

response

private javax.servlet.http.HttpServletResponse response

out

private java.io.PrintWriter out

rs

private java.sql.ResultSet rs

dbBean

private dbsection.DBConnectionBean dbBean

customer

private dbsection.CustomerBean customer

output

private java.lang.String output
Constructor Detail
Logout

public Logout()
Method Detail
doPost

public void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)

124

 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's POST request by simply passing the control to the doGet.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Parameters:
request - The client's request.
response - The response to the client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - the client request.
response - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

processRequest

private void processRequest()
Processing the request for logging the user out and terminating the current user

session.
Returns:
void

exitLinks

private void exitLinks()
Displays the available links to direct control in another page, in case the user

wants to discontinue the session
Returns:

125

void.

dbsection

Class MetaTags

java.lang.Object
 |
 +-dbsection.MetaTags

public class MetaTags
extends java.lang.Object
The MetaTags class codes the tags of a file as an object

Field Summary
(package

private) int index

(package
private)
 java.lang.String[
]

parsedFile

Constructor Summary

MetaTags()
 The default constructor of the class initializes the variables.

Method Summary
 void add(java.lang.String newString)

 Adds a new tag passed as the parameter
 java.lang.String[

] getParsedFile()
 Gets the tags of the parsed file

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

126

Field Detail
parsedFile

java.lang.String[] parsedFile

index

int index
Constructor Detail
MetaTags

public MetaTags()
The default constructor of the class initializes the variables.
Method Detail
getParsedFile

public java.lang.String[] getParsedFile ()
Gets the tags of the parsed file
Returns:
An array of String representing the tags of the file

add

public void add(java.lang.String newString)
Adds a new tag passed as the parameter
Parameters:
newString - The new tag to be added
Returns:
void

127

dbsection

Class OpenFile

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.OpenFile
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class OpenFile
extends javax.servlet.http.Ht tpServlet
The class OpenFile defines a servlet that is responsible to open any file a user

may select either the file is saved locally or in another server
See Also:
Serialized Form

Field Summary
private java.lang.String action

private java.util.Vector avaCLFiles

private java.util.Vector avaFiles

private java.util.Vector avaSEFiles

private java.util.Vector avaTSFiles

private java.util.Vector avaUNFiles

128

private java.lang.String classif

private java.lang.String[] classification

private java.lang.String[] date

private
 dbsection.DBConnectionBean dbBean

private dbsection.UserBean newuser

private java.lang.String otherServer

private java.io.PrintWriter out

private

 javax.servlet.http.HttpServletRequest req

private
 javax.servlet.http.HttpServletRespons
e

res

private java.lang.String selFile

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

OpenFile ()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
 Processing user's GET request by simply passing the control
to the doPost.

 void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)

129

 Processing user's POST request.
private

 java.util.Vector findFiles(java.lang.String service,
java.lang.String position, java.lang.String clearance,
java.lang.String country)
 Finds the files that are available to a specific user according
to his security authorizations

private
 java.lang.String[
]

findVersion(java.lang.String fullName)
 This method analyses the filename to extract the date and the
time, the file saved in the system which actually represents the
version of the file.

private int getClassLevel(java.lang.String classification)
 Converts user's classification to a number

private
 void openConnection()

 Opens a connection with the database to retrieve the files
that are available to the user

private
 void printAvaFiles()

 This method gets the available files through the findFiles
method and display them to the user according to his/her
classification

private
 void printData()

 Prints the user's personal and Security data retrieved from
the database that contained in the UserBean object

private
 void printServerAvaFiles()

 This method gets the available files passed from the
associated server and present them to the user according to his/her
classification

private
 void startEditor(java.lang.String classLevel,

java.lang.String sFile)
 Calls the applet that will in turn load and initiate the applet-
based XML editor

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servle t.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, no tify, notifyAll, toString,

wait, wait, wait

130

Field Detail
newuser

private dbsection.UserBean newuser

avaUNFiles

private java.util.Vector avaUNFiles

avaCLFiles

private java.util.Vector avaCLFiles

avaSEFiles

private java.util.Vector avaSEFiles

avaTSFiles

private java.util.Vector avaTSFiles

out

private java.io.PrintWriter out

dbBean

private dbsection.DBConnectionBean dbBean

classification

private java.lang.String[] classification

date

private java.lang.String[] date

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res

selFile

131

private java.lang.String selFile

classif

private java.lang.String classif

action

private java.lang.String action

otherServer

private java.lang.String otherServer

avaFiles

private java.util.Vector avaFiles
Constructor Detail
OpenFile

public OpenFile ()
Method Detail
doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - The client's request.
response - The response to the client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doPost

public void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)

132

 throws java.io.IOException
Processing user's POST request.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

startEditor

private void startEditor(java.lang.String classLevel,
 java.lang.String sFile)
Calls the applet that will in turn load and initiate the applet-based XML editor
Parameters:
classLevel - The classification level of the user that will help find the directory

where the file is saved.
sFile - The name of the file that the editor will open
Returns:
void.

getClassLevel

private int getClassLevel(java.lang.String classification)
Converts user's classification to a number
Parameters:
classification - The classification level of the user
Returns:
An integer number representing the user's classification

printServerAvaFiles

private void printServerAvaFiles()
This method gets the available files passed from the associated server and present

them to the user according to his/her classification
Returns:
void

printAvaFiles

private void printAvaFiles()
This method gets the available files through the findFiles method and display

them to the user according to his/her classification
Returns:
void

133

findVersion

private java.lang.String[] findVersion(java.lang.String fullName)
This method analyses the filename to extract the date and the time, the file saved

in the system which actually represents the version of the file.
Parameters:
fullName - The complete name of the file
Returns:
An array of string containing the date and the time

findFiles

private java.util.Vector findFiles(java.lang.String service,
 java.lang.String position,
 java.lang.String clearance,
 java.lang.String country)
Finds the files that are available to a specific user according to his security

authorizations
Parameters:
service - The user's service
position - The user's position in his or her service
clearance - The user's clearance (Unclassified, Classified etc.)
country - The user's country
Returns:
void.
Throws:
java.lang.Exception - In case of a error encountered

openConnection

private void openConnection()
Opens a connection with the database to retrieve the files that are available to the

user
Returns:
void

printData

private void printData()
Prints the user's personal and Security data retrieved from the database that

contained in the UserBean object
Returns:
void.

134

dbsection

Class SaveFile

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.SaveFile
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class SaveFile
extends javax.servlet.http.HttpServlet
implements java.io.Serializable
The SaveFile class is responsible to upload the file from the user's machine to a

temporary area of the system and to check and parse the file
See Also:
Serialized Form

Field Summary
private boolean decision

private java.lang.String desiredClass

private java.lang.String desiredCountry

private java.lang.String ending

private java.lang.String errorState

private java.io.File file

private java.lang.String filename

135

private java.lang.String[] fileSecAttr

(package private)

static dbsection.FileTags fileTags

private java.lang.String fiuo

private java.lang.String fouo

(package private)
static dbsection.SecMetadataManager manager

private int MAXIMUM_FILE_LINES

private java.io.PrintWriter out

private

 javax.servlet.http.HttpServletRequest req

private
 javax.servlet.http.HttpServletRespons
e

res

private java.io.File selectedFile

private java.lang.String tempFile

private java.lang.String uploaded

private dbsection.UserBean user

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

SaveFile ()

136

Method Summary
private

 void askConfirm(java.lang.String status)
 In the cases where the status found is "upgrade" or
"downgrade" this method displays the appropriate message

private
 void checkingFile (java.lang.String selFile)

 This method passes the file to the Echo24 class which parses
the file and returns a filetags object This object and the userBean
object are passed to the security manager for the decision.

 void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
 Processing user's POST request.

private
 void errorGoBack (java.lang.String error)

 Defines several types of error conditions depending on the
specified error

private
 void exitLinks()

 Displays the available links to direct control in another servlet,
in case the user wants to cancel this procedure

private
 java.lang.Strin
g

findFilename(java.lang.String stringFile)
 This method extracts the name of the file from incoming
stream, and checks if it is a valid XML filename

private
 void printData()

 Prints the user's personal and Security data retrieved from the
database that contained in the UserBean object

private
 java.lang.Strin
g

uploadFile()
 Uploads the file to a temporary position for further processing

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doGet, doOptions, doPut, doTrace, getLastModified, service,

service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
user

137

private dbsection.UserBean user

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res

uploaded

private java.lang.Str ing uploaded

selectedFile

private java.io.File selectedFile

file

private java.io.File file

out

private java.io.PrintWriter out

MAXIMUM_FILE_LINES

private int MAXIMUM_FILE_LINES

decision

private boolean decision

desiredClass

private java.lang.String desiredClass

desiredCountry

private java.lang.String desiredCountry

fouo

private java.lang.String fouo

138

fiuo

private java.lang.String fiuo

tempFile

private java.lang.String tempFile

filename

private java.lang.String filename

ending

private java.lang.String ending

errorState

private java.lang.String errorState

fileSecAttr

private java.lang.String[] fileSecAttr

fileTags

static dbsection.FileTags fileTags

manager

static dbsection.SecMetadataManager manager
Constructor Detail
SaveFile

public SaveFile()
Method Detail
doPost

public void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws java.io.IOException
Processing user's POST request.
Overrides:
doPost in class javax.servlet.http.HttpServlet

139

Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

uploadFile

private java.lang.String uploadFile()
 throws java.io.IOException
Uploads the file to a temporary position for further processing
Returns:
If everything was done successfully returns the name of the temporary file
Throws:
java.io.IOException - In case a communication exception is thrown

findFilename

private java.lang.String findFilename(java.lang.String stringFile)
This method extracts the name of the file from incoming stream, and checks if it

is a valid XML filename
Parameters:
stringFile - The complete name of the file
Returns:
The name of the file found

errorGoBack

private void errorGoBack (java.lang.String error)
Defines several types of error conditions depending on the specified error
Parameters:
error - The error specifies the cause of the pr oblem.
Returns:
void.

checkingFile

private void checkingFile(java.lang.String selFile)
This method passes the file to the Echo24 class which parses the file and returns a

filetags object This object and the userBean object are passed to the security ma nager for
the decision.

Parameters:
selFile - the selected file to be parsed
Returns:
void.

140

askConfirm

private void askConfirm(java.lang.String status)
In the cases where the status found is "upgrade" or "downgrade" this method

displays the appropriate message
Parameters:
status - The results of the tag's comparison
Returns:
void.

exitLinks

private void exitLinks()
Displays the available links to direct control in another servlet, in case the user

wants to cancel this procedure
Returns:
void.

printData

private void printData()
Prints the user's personal and Security data retrieved from the database that

contained in the UserBean object
Returns:
void.

141

dbsection

Class SecMetadataManager

java.lang.Object
 |
 +-dbsection.SecMetadataManager

public class SecMetadataManager
extends java.lang.Object
The class SecMetadataManager is responsible to compare the received UserBean

and FileTags objects and to produce the necessary decision according to the policy

Field Summary
private

 boolean approved

private
 dbsection.FileTag
s

fileTags

private
 dbsection.UserBea
n

userBean

Constructor Summary

SecMetadataManager(dbsection.FileTags tags, dbsection.UserBean user)
 The default constructor of the class receives the passed objects and initializes the
variable of the decision as false

Method Summary
 java.lang.Strin

g compareTags(java.lang.String desiredClass,
java.lang.String desiredCountry, java.lang.String fouo,
java.lang.String fiuo)
 This method compares the tags of the file with those of
the user, and returns the result.

private int getClassLevel(java.lang.String classification)
 This method converts a classification level to a number
to be easiest to compare

 boolean makeDecision()

142

 This method makes the decision

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
fileTags

private dbsection.FileTags fileTags

userBean

private dbsection.UserBean userBean

approved

private boolean approved
Constructor Detail
SecMetadataManager

public SecMetadataManager(dbsection.FileTags tags,
 dbsection.UserBean user)
The default constructor of the class receives the passed objects and initializes the

variable of the decision as false
Parameters:
tags - The FileTags object representing the tags of a specific file
Method Detail
makeDecision

public boolean makeDecision()
This method makes the decision
Returns:
A boolean variable containing the decision

compareTags

public java.lang.String compareTags(java.lang.String desiredClass,
 java.lang.String desiredCountry,
 java.lang.String fouo,
 java.lang.String fiuo)
This method compares the tags of the file with those of the user, and returns the

result.
Returns:

143

A String that can be upgrade, downgrade or normal

getClassLevel
private int getClassLevel(java.lang.String classification)
This method converts a classification level to a number to be easiest to compare
Returns:
An integer representing the classification level
dbsection

Class ServerLogin

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.Se rverLogin
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class ServerLogin
extends javax.servlet.http.HttpServlet
The class ServerLogin defines a servlet that is responsible to authenticate

associated servers trying to login. Upon positive authentication, all the names of the files
that are available to that specific server are sent for further processing.

See Also:
Serialized Form

Field Summary
 java.util.Vector avaFiles

private java.sql.Connection connection

private int CONNECTION_ERROR

private java.lang.String curServiceClass

private java.lang.String curServiceName

private java.lang.String curServicePos

private java.lang.String curUserCountryId

144

private int curUserId

private
 dbsection.DBConnectionBean dbBean

 java.lang.Exception dbe

private int DRIVER_ERROR

private java.util.Enumeration enum

private java.lang.String filename

private int INVALID_USER

private java.io.PrintWriter out

private int QUERY_ERROR

private int QUERY_ERROR_EXC

private

 javax.servlet.http.HttpServletRequest request

private
 javax.servlet.http.HttpServletRespons
e

response

private java.sql.ResultSet rs

private java.sql.ResultSet rs2

private java.lang.String[] savedFilename

private java.lang.String server

private java.lang.String serverName

private
 javax.servlet.ServletOutputStream serverOut

private java.lang.String serverPass

145

 dbsection.UserBean user

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

ServerLogin()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
 Processing user's GET request.

 void doPost(javax.servlet.http.HttpServletRequest request
, javax.servlet.http.HttpServletResponse response)
 Processing user's POST request by simply passing the
control to the doGet.

private
 java.util.Vector findFiles(java.lang.String serverCode)

 Finds all the files that are releasable to that specific server
according to the security authorizations contained in the database

private
 java.lang.String[
]

findVersion(java.lang.String fullName)
 This method analyses the filename to extract the date and the
time, the file saved in the system which actually represents the
version of the file.

private
 void openConnection()

 Opens a connection with the database to retrieve the
available files of this user

private
 void validateServer(java.lang.String name,

java.lang.String pass)
 Authenticates a server with the given username & password

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet

146

destroy, getInitParameter, getInitParameterNames, getServletConfig,
getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
DRIVER_ERROR

private final int DRIVER_ERROR
See Also:
Constant Field Values

CONNECTION_ERROR

private final int CONNECTION_ERROR
See Also:
Constant Field Values

QUERY_ERROR

private final int QUERY_ERROR
See Also:
Constant Field Values

QUERY_ERROR_EXC

private final int QUERY_ERROR_EXC
See Also:
Constant Field Values

INVALID_USER

private final int INVALID_USER
See Also:
Constant Field Values

request

private javax.servlet.http.HttpServletRequest request

response

private javax.servlet.http.HttpServle tResponse response

147

connection

private java.sql.Connection connection

out

private java.io.PrintWriter out

serverOut

private javax.servlet.ServletOutputStream serverOut

rs

private java.sql.ResultSet rs

rs2

private java.sql.ResultSet rs2

dbBean

private dbsection.DBConnectionBean dbBean

curServiceName

private java.lang.String curServiceName

curServicePos

private java.lang.String curServicePos

curServiceClass

private java.lang.String curServiceClass

curUserCountryId

private java.lang.String curUserCountryId

curUserId

private int curUserId

dbe

148

public java.lang.Exception dbe

user

public dbsection.UserBean user

avaFiles

public java.util.Vector avaFiles

enum

private java.util.Enumeration enum

serverName

private java.lang.String serverName

serverPass

private java.lang.String serverPass

filename

private java.lang.String filename

server

private java.lang.String server

savedFilename

private java.lang.String[] savedFilename
Constructor Detail
ServerLogin

public ServerLogin()
Method Detail
doPost

public void doPost(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException

149

Processing user's POST request by simply passing the control to the doGet.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Parameters:
request - The client's request.
response - The response to the client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - the client request.
response - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

validateServer

private void validateServer(java.lang.String name,
 java.lang.String pass)
Authenticates a server with the given username & password
Parameters:
name - The server's username.
pass - The server's password.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a servlet error encountered

findVersion

150

private java.lang.String[] findVersion(java.lang.String fullName)
This method analyses the filename to extract the date and the time, the file saved

in the system which actually represents the version of the file.
Parameters:
fullName - The complete name of the file
Returns:
An array of string containing the date and the time

findFiles

private java.util.Vector findFiles(java.lang.String serverCode)
Finds all the files that are releasable to that specific server according to the

security authorizations contained in the database
Parameters:
serverCode - The code of this server that recognized by the system
Returns:
A Vector containing the releasable files
Throws:
java.lang.Exception - If an error found during the process

openConnection

private void openConnection()
Opens a connection with the database to retrieve the available files of this user
Returns:
void

151

dbsection

Class UpdateDb

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.UpdateDb
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class UpdateDb
extends javax.servlet.http.HttpServlet
The UpdateDb class gets an already parsed file, updates the database and saves

the file in the "secure" server area.
See Also:
Serialized Form

Field Summary
private

 dbsection.DBConnectionBean dbBean

private java.lang.String desiredClass

private int fieldId

private java.lang.String filename

private java.lang.String finalFilename

private dbsection.UserBean newuser

private java.io.PrintWriter out

private
 javax.servlet.http.HttpServletRequest req

152

private

 javax.servlet.http.HttpServletRespons
e

res

private java.lang.String tempFile

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

UpdateDb()

Method Summary
private

 void copyFile()
 Copies the file from the temporary server area to the simulated
permanent secure area

private
 void createFinalFilename()

 Creates the final filename that the file will get in order to be
saved, by adding the date and the time

private
 java.lang.Strin
g

createUserDirectory()
 Creates a new directory according to user's classification in
case there is not one yet

 void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Processing user's GET request by simply passing the control to
the doPost.

 void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
 Processing user's POST request.

private
 void exitLinks()

 Displays the available links to direct the control in another
servlet, in case the user wants to cancel this procedure

private
 void openConnection()

 Opens a connection with the database to retrieve the available
files of this user

153

private
 void printData()

 Prints the user's personal and Security data retrieved from the
database that contained in the UserBean object

private
 boolean updateDatabase()

 Updates the database with the new file's data and metadata

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
newuser

private dbsection.UserBean newuser

out

private java.io.PrintWriter out

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res

fieldId

private int fieldId

desiredClass

private java.lang.String desiredClass

tempFile

154

private java.lang.String tempFile

filename

private java.lang.String filename

finalFilename

private java.lang.String finalFilename

dbBean

private dbsection.DBConnectionBean dbBean
Constructor Detail
UpdateDb

public UpdateDb()
Method Detail
doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - The client request.
response - The response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doPost

public void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws java.io.IOException
Processing user's POST request.
Overrides:
doPost in class javax.servlet.http.HttpServlet

155

Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

updateDatabase

private boolean updateDatabase()
Updates the database with the new file's data and metadata
Returns:
A boolean variable is returned to verify the success of the procedure

copyFile

private void copyFile ()
 throws java.io.IOException
Copies the file from the temporary server area to the simulated permanent secure

area
Returns:
void.
Throws:
java.io.IOException - In case of a I/O error encountered

createFinalFilename

private void createFinalFilename ()
Creates the final filename that the file will get in order to be saved, by adding the

date and the time
Returns:
void.

createUserDirectory

private java.lang.String createUserDirectory()
 throws java.lang.SecurityException
Creates a new directory according to user's classification in case there is not one

yet
Returns:
The newly created directory
Throws:
java.lang.SecurityException - In the case of the creation is not allowed by the

security manager

openConnection

156

private void openConnection()
Opens a connection with the database to retrieve the available files of this user
Returns:
void

printData

private void printData()
Prints the user's personal and Security data retrieved from the database that

contained in the UserBean object
Returns:
void.

exitLinks

private void exitLinks()
Displays the available links to direct the control in another servlet, in case the user

wants to cancel this procedure
Returns:
void.

157

dbsection

Class UserBean

java.lang.Object
 |
 +--dbsection.UserBean

public class UserBean
extends java.lang.Object
This class defines a bean used to maintain user's data during the session.

Field Summary
private

 java.util.Vecto
r

avaFiles

private
 java.lang.Strin
g

city

private
 java.lang.Strin
g

countryId

private
 java.lang.Strin
g

email

private
 java.lang.Strin
g

firstName

private
 java.lang.Strin
g

lastName

private
 java.lang.Strin
g

loginName

private
 java.lang.Strin
g

middleInitial

private
 java.lang.Strin
g

password

private
 java.lang.Strin
g

phone

158

private
 java.lang.Strin
g

serviceClass

private
 java.lang.Strin
g

serviceName

private
 java.lang.Strin
g

servicePos

private
 java.lang.Strin
g

state

private
 java.lang.Strin
g

street

private
 int userID

private

 java.lang.Strin
g

zip

Constructor Summary

UserBean()
 The default constructor initializes a new object by calling the getReset() method

Method Summary
 java.util.Vecto

r getAvaFiles()
 Gets user's available files stored in the object

 java.lang.Strin
g getCity()

 Gets user's city name
 java.lang.Strin

g getCountryId()
 Gets user's country ID

 java.lang.Strin
g getEmail()

 Gets user's email address
 java.lang.Strin

g getFirstName()
 Gets user's first name

 java.lang.Strin
g getFullName()

 Gets user's full name name (first + middle + last)
 java.lang.Strin

g getLastName()
 Gets user's last name

 java.lang.Strin
g getLoginName()

 Gets user's login name

159

 java.lang.Strin
g getMiddleInitial()

 Gets user's middle initial
 java.lang.Strin

g getPassword()
 Gets user's password

 java.lang.Strin
g getPhone ()

 Gets user's phone number
 java.lang.Strin

g getReset()
 Resets all fields by creating new empty objects

 java.lang.Strin
g getServiceClass()

 Gets user's service classification
 java.lang.Strin

g getServiceName()
 Gets user's service name

 java.lang.Strin
g getServicePos ()

 Gets user's service position
 java.lang.Strin

g getState()
 Gets user's state

 java.lang.Strin
g getStreet()

 Gets user's street
 int getUserID()

 Gets user's ID
 java.lang.Strin

g getZip()
 Gets user's zip

 java.lang.Strin
g secString()

 Gets user's security data all in a String
 void setAvaFiles(java.util.Vector newAvaFiles)

 Sets user's available files with a new value
 void setCity(java.lang.String newCity)

 Sets user's city name with a new value
 void setCountryId(java.lang.String newCountryId)

 Sets user's country ID with a new value
 void setEmail(java.lang.String newEmail)

 Sets user's email address with a new value
 void setFirstName(java.lang.String newFirstName)

 Sets user's first name with a new value
 void setLastName(java.lang.String newLastName)

 Sets user's last name with a new value
 void setLoginName(java.lang.String newLoginName)

 Sets user's login name with a new value

160

 void setMiddleInitial(java.lang.String newMiddleInitial)
 Sets user's middle initial with a new value

 void setPassword(java.lang.String newPassword)
 Sets user's password with a new value

 void setPhone (java.lang.String newPhone)
 Sets user's phone number with a new value

 void setServiceClass(java.lang.String newServiceClass)
 Sets user's service classification with a new value

 void setServiceName(java.lang.String newServiceName)
 Sets user's service name with a new value

 void setServicePos(java.lang.String newServicePos)
 Sets user's service position with a new value

 void setState(java.lang.String newState)
 Sets user's state with a new value

 void setStreet(java.lang.String newStreet)
 Sets user's street name with a new value

 void setUserID(int newUserID)
 Sets user ID with a new value

 void setZip(java.lang.String newZip)
 Sets user's zip code with a new value

 java.lang.Strin
g toString()

 Gets user's personal data all in a String

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,

wait, wait

Field Detail
userID

private int userID

firstName

private java.lang.String firstName

middleInitial

private java.lang.String middleInitial

161

lastName

private java.lang.String lastName

street

private java.lang.String street

city

private java.lang.String city

zip

private java.lang.String zip

state

private java.lang.String state

phone

private java.lang.String phone

loginName

private java.lang.String loginName

password

private java.lang.String password

email

private java.lang.String email

serviceName

private java.lang.String serviceName

servicePos

private java.lang.String servicePos

serviceClass

162

private java.lang.String serviceClass

countryId

private java.lang.String countryId

avaFiles

private java.util.Vector avaFiles
Constructor Detail
UserBean

public UserBean()
The default constructor initializes a new object by calling the getReset() method
Method Detail
getReset

public java.lang.String getReset()
Resets all fields by creating new empty objects
Returns:
An empty String

getUserID

public int getUserID()
Gets user's ID
Returns:
the user's ID

setUserID

public void setUserID(int newUserID)
Sets user ID with a new value
Parameters:
newUserID - the new userID
Returns:
void

getFirstName

public java.lang.String getFirstName()
Gets user's first name
Returns:
the user's first name

163

setFirstName

public void setFirstName(java.lang.String newFirstName)
Sets user's first name with a new value
Parameters:
newFirstName - The new first name
Returns:
void

getMiddleInitial

public java.lang.String getMiddleInitial()
Gets user's middle initial
Returns:
the user's middle initial

setMiddleInitial

public void setMiddleInitial(java.lang.String newMiddleInitial)
Sets user's middle initial with a new value
Returns:
void

getLastName

public java.lang.String getLastName()
Gets user's last name
Returns:
the user's last name

setLastName

public void setLastName(java.lang.String newLastName)
Sets user's last name with a new value
Returns:
void

getFullName

public java.lang.String getFullName()
Gets user's full name name (first + middle + last)
Returns:
the user's full name

setStreet

164

public void setStreet(java.lang.String newStreet)
Sets user's street name with a new value
Returns:
void

setCity

public void setCity(java.lang.String newCity)
Sets user's city name with a new value
Returns:
void

setZip

public void setZip(java.lang.String newZip)
Sets user's zip code with a new value
Returns:
void

setState

public void setState(java.lang.String newState)
Sets user's state with a new value
Returns:
void

setPhone

public void setPhone(java.lang.String newPhone)
Sets user's phone number with a new value
Returns:
void

setLoginName

public void setLoginName(java.lang.String newLoginName)
Sets user's login name with a new value
Returns:
void

setPassword

public void setPassword(java.lang.String newPassword)
Sets user's password with a new value
Returns:
void

165

setEmail

public void setEmail(java.lang.String newEmail)
Sets user's email address with a new value
Returns:
void

setServiceName

public void setServiceName(java.lang.String newServiceName)
Sets user's service name with a new value
Returns:
void

setServicePos

public void setServicePos (java.lang.String newServicePos)
Sets user's service position with a new value
Returns:
void

setServiceClass

public void setServiceClass(java.lang.String newServiceClass)
Sets user's service classification with a new value
Returns:
void

setCountryId

public void setCountryId(java.lang.String newCountryId)
Sets user's country ID with a new value
Returns:
void

setAvaFiles

public void setAvaFiles(java.util.Vector newAvaFiles)
Sets user's available files with a new value
Returns:
void

getStreet

public java.lang.String getStreet()

166

Gets user's street
Returns:
the user's street

getCity

public java.lang.String getCity()
Gets user's city name
Returns:
the user's city name

getZip

public java.lang.String getZip()
Gets user's zip
Returns:
the user's zip

getState

public java.lang.String getState()
Gets user's state
Returns:
the user's state

getPhone

public java.lang.String getPhone ()
Gets user's phone number
Returns:
the user's phone number

getLoginName

public java.lang.String getLoginName()
Gets user's login name
Returns:
the user's login name

getPassword

public java.lang.String getPassword()
Gets user's password
Returns:
the user's password

167

getEmail

public java.lang.String getEmail()
Gets user's email address
Returns:
the user's email address

getServiceName

public java.lang.String getServiceName()
Gets user's service name
Returns:
the user's service name

getServicePos
public java.lang.String getServicePos()
Gets user's service position
Returns:
the user's service position

getServiceClass
public java.lang.String getServiceClass()
Gets user's service classification
Returns:
the user's service classification

getCountryId

public java.lang.String getCountryId()
Gets user's country ID
Returns:
the user's country ID

getAvaFiles

public java.util.Vector getAvaFiles()
Gets user's available files stored in the object
Returns:
the user's available files

toString
public java.lang.String toString()
Gets user's personal data all in a String
Overrides:
toString in class java.lang.Object
Returns:

168

the user's personal data

secString

public java.lang.String secString()
Gets user's security data all in a String
Returns:
the user's security data
dbsection

Class UserOptions

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.UserOptions
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class UserOptions
extends javax.servlet.http.HttpServlet
The class UserOptions creates a page displaying the user's information (personal

and security) and the available options for that session. After the user's selection pass the
control to the next UserSelection servlet

See Also:
Serialized Form

Field Summary
private

 java.util.Vector avaFiles

private
 dbsection.UserBean newuser

private

 java.io.PrintWrite
r

out

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

169

Constructor Summary

UserOptions()

Method Summary
 void doGet(javax.servlet.http.HttpServletRequest req,

javax.servlet.http.HttpServletResponse res)
 Processing user's GET request.

privat
e void printData()

 Prints the user's personal and Security data retrieved from the
database that contained in the UserBean object

privat
e void printOptions()

 Creates a drop down list that presents the user's available options.

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPost, doPut, doTrace, getLastModified, service,

service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toSt ring,

wait, wait, wait

Field Detail
newuser

private dbsection.UserBean newuser

avaFiles

private java.util.Vector avaFiles

out

private java.io.PrintWriter out
Constructor Detail
UserOptions

170

public UserOptions()
Method Detail
doGet

public void doGet(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws java.io.IOException
Processing user's GET request.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
req - the client request.
res - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

printData

private void printData()
Prints the user's personal and Security data retrieved from the database that

contained in the UserBean object
Returns:
void.

printOptions

private void printOptions()
Creates a drop down list that presents the user's available options.
Returns:
void.

171

dbsection

Class UserSelection

java.lang.Object
 |
 +-javax.servlet.GenericServlet
 |
 +-javax.servlet.http.HttpServlet
 |
 +-dbsection.UserSelection
All Implemented Interfaces:
java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

public class UserSelection
extends javax.servlet.http.HttpServlet
The UserSelection class is responsible to get the user's selection from the main

menu and to redirect the control to the respective servlet for further processing
See Also:
Serialized Form

Field Summary
private java.util.Vector avaFiles

private java.lang.String FileMenu

private dbsection.UserBean freshuser

private java.lang.String nextServlet

private java.io.PrintWriter out

private

 javax.servlet.http.HttpServletRequest req

private
 javax.servlet.http.HttpServletRespons
e

res

172

Fields inherited from class javax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

UserSelection()

Method Summary
privat

e void continueSession()
 Continue the session and pass the control to the next servlet.

 void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
 Processing user's GET request by simply passing the control to the
doPost.

 void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)
 Processing user's POST request.

Methods inherited from class javax.servlet.http.HttpServlet
doDelete, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class javax.servlet.GenericServlet
destroy, getInitParameter, getInitParameterNames, getServletConfig,

getServletContext, getServletInfo, getServletName, init, init, log, log

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
req

private javax.servlet.http.HttpServletRequest req

res

173

private javax.servlet.http.HttpServletResponse res

freshuser

private dbsection.UserBean freshuser

avaFiles

private java.util.Vector avaFiles

out

private java.io.PrintWriter out

nextServlet

private java.lang.String nextServlet

FileMenu

private java.lang.String FileMenu
Constructor Detail
UserSelection

public UserSelection()
Method Detail
doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet in class javax.servlet.http.HttpServlet
Parameters:
request - The client's request.
response - The response to the client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

doPost

174

public void doPost(javax.servlet.http.HttpServletRequest req,
 javax.servlet.http.HttpServletResponse res)
 throws java.io.IOException
Processing user's POST request.
Overrides:
doPost in class javax.servlet.http.HttpServlet
Parameters:
req - the client request.
res - the response to client.
Returns:
void.
Throws:
javax.servlet.ServletException - In case of a servlet error encountered
java.io.IOException - In case of a I/O error encountered

continueSession

private void continueSession()
 throws java.lang.Exception
Continue the session and pass the control to the next servlet.
Returns:
void.
Throws:
Exception. - In case an invalid situation is encountered
java.lang.Exception

175

APPENDIX B. JAVA COD E

176

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import java.io.*;
import java.util.*;
import java.sql.*;

import dbsection.*;

/**
 * This class implements a bean that is used from many other classes
 * to process all transactions with the backend database.
 * It is a unique point of connection with the database,
 * using the JDBC API.
 * @author Panos
 */
public class DBConnectionBean
{
 private boolean loaded;
 private boolean connected;
 private String url;
 private String driver;
 private String user;
 private String password;
 private Connection con;
 private Statement statement;
 private String query;
 private String update;
 private String primaryKeyQuery;

 /**
 * The default constructor of the calss that sets the
 * appropriate url and driver for the database
 * @return void.
 */
 public void DBConnectionBean()
 {
 loaded = false;
 connected = false;

 url = "jdbc:odbc:UserDB" ;

177

 driver = "sun.jdbc.odbc .JdbcOdbcDriver" ;
 user = "panos" ;
 password = "greek" ;

 con = null;
 query = new String("");
 primaryKeyQuery = new String();
 }

 /**
 * Set the URL of the database.
 * @param newUrl The new URL
 * @return void.
 */
 public void setUrl(String newUrl)
 {
 url = newUrl;
 }

 /**
 * Sets the driver for the database
 * @param newDriver The new driver.
 * @return void.
 */
 public void setDriver(String newDriver)
 {
 driver = newDriver;
 }

 /**
 * Sets the DB user name.
 * @param newUser The new user name.
 * @return void.
 */
 public void setUser(String newUser)
 {
 user = newUser;
 }

 /**
 * Sets the DB password.
 * @param newPassword The new password.
 * @return void.
 */
 public void setPassword(String newPassword)
 {
 password = newPassword;
 }

 /**
 * Loads the driver

178

 * @return True if the driver is loaded successfully
 */
 public boolean isLoaded()
 {
 try
 {
 Class.forName(driver);
 loaded = true;
 }
 catch(ClassNotFoundException cnfe)
 {
 loaded = false;
 }
 return loaded;

 } // end of isLoaded()

 /**
 * Establish the connection with the DB.
 * @return True if the connection is established.
 */
 private boolean isConnected()
 {
 try
 {
 con = DriverManager.getConnection(url, user, password);
 statement = con.createStatement();
 connected = true;
 }
 catch(SQLException sqle) {
 connected = false;
 }
 return connected;
 }

 /**
 * Sets the query string.
 * @param query The new query string.
 * @return A ResultSet object containing the results
 * of the query
 */
 public ResultSet query(String query)
 {
 this.query = query;
 return getQuery();
 }

 /**
 * Queries the DB and return the result ResultSet object
 * @return A ResultSet object containing the results
 * of the query

179

 */
 public ResultSet getQuery()
 {
 ResultSet rs = null;
 if(isConnected())
 {
 try
 {
 rs = statement.executeQuery(query);
 }
 catch(Exception e)
 {
System.out.println("Inside DBConnection exception is = " + e);

 }
 }
 return rs;
 }

 /**
 * Sets the query.
 * @param query The new query.
 * @return void.
 */
 public void setQuery(String query)
 {
 this.query = query;
 }

 /**
 * Sets the update query.
 * @param update The update query.
 * @return void.
 */
 public void setUpdate(String update)
 {
 this.update = update;
 }

 /**
 * Executes an update query by calling the getUpdate method
 * @param updateQuery the update query
 * @return An integer representing the primary key
 * or -1 if an error happens.
 */
 public int update(String updateQuery)
 {
 update = updateQuery;
 return getUpdate();
 }

180

 /**
 * Executes an update query.
 * @return An integer representing the primary key
 * or -1 if an error happens.
 */
 public int getUpdate()
 {
 int result = -1;
 if(is Connected())
 {
 try
 {

 result = statement.executeUpdate(update);
 isClose();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
 return result;
 }

 /**
 * This method closes the connection with the database
 * @return A boolean true if the connection is closed
 * successfully
 */
 public boolean isClose()
 {
 try
 {
 con.close();
 statement.close();
 }
 catch(Exception e) {}
 connected = false;

 return true;
 }

 /**
 * Sets the primary key for the query.
 * @param newPrimaryKeyQuery The new primary key for that query
 * @return void.
 */
 public void setPrimaryKeyQuery(String newPrimaryKeyQuery)
 {
 primaryKeyQuery = newPrimaryKeyQuery;
 }

181

 /**
 * Obtains a new primary key in the table specified by the current primary.
 * The result set of the ordered set of existing primary keys is examined
 * sequentially, until the smalest non used positive integer is found.
 * This method may only be used for tables using integers as a primary key.
 * @return the new primary key or -1 if an error happens.
 */
 public int getPrimaryKey()
 {
 int primaryKey = -1;
 try
 {
 ResultSet rs = query(primaryKeyQuery);
 if(rs.next())
 {
 primaryKey = rs.getInt(1);
 do
 {
 ++primaryKey;
 }while(rs.next() && (primaryKey == rs.getInt(1)));
 }
 }
 catch(SQLException e)
 {
 e.printStackTrace();
 primaryKey = -1;
 }
 return primaryKey;
 }

} // End of DBConnectionBean class

182

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import java.io.*;
import java.io.Writer ;
import java.net.* ;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

/**
 * The class Echo24 is responsible to
 * parse the passed file and extract all of its
 * elements and attributes
 * @author Panos
 */
public class Echo24 extends DefaultHandler
{
 // Data member
 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 private String[] parsedFile ;
 private File file ;
 private FileTags fileTags ;

 private boolean secElementsFound = false ;
 private boolean usSecElementFound = false ;
 private boolean nonusSecElementFounf = false ;
 private String secCategory ="" ;
 private int index=0 ;

/**
 * The default constructor of the class
 */
 public Echo24()
 {

183

 }

 /**
 * This method parses the file by using one
 * of the SAXParsers from the SAXParserFactory
 * @param filename The name of the file to be parsed
 * @return A FileTags object containing all the security tags
 * of the passed file
 * @exception Throwable In case of an error during the process
 */
 public FileTags parseFile(String filename)
 {
 // Use an instance of ourselves as the SAX event handler *******
 DefaultHandler handler = Echo24.this ;

 // Use the default parser
 SAXParserFactory factory = SAXParserFactory.newInstance();

 try
 {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");
 file = new File(filename) ;

 // pass the file to the new fileTags object
 // so this fileTags object is related to this file
 fileTags = new FileTags(file) ;

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(filename , handler);

 parsedFile = this.getParsedFile() ;

 }
 catch (Throwable t)
 {
 fileTags=null;
 }

 return fileTags ;

 }

 /**
 * This method parses the file in the passed URL by using one
 * of the SAXParsers from the SAXParserFactory
 * @param filename The name of the file to be parsed
 * @return A FileTags object containing all the security tags
 * of the passed file

184

 * @exception Throwable In case of an error during the process
 */
 public FileTags mainNew(String argv)
 {
 // Use an instance of ourselves as the SAX event handler *******
 DefaultHandler handler = Echo24.this ;

 // Use the default parser
 SAXParserFactory factory = SAXParserFactory.newInstance();

 try
 {
 URL checkUrl = new URL(argv) ;

 // Set up output stream
 out = new OutputStreamWriter(Syste m.out, "UTF8");
 file = new File(argv) ;

 // pass the file to the new fileTags object
 // so this fileTags object is related to this file
 fileTags = new FileTags(file) ;

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();

 saxParser.parse(argv , handler);

 parsedFile = this.getParsedFile() ;

 }
 catch (Throwable t)
 {
 t.printStackTrace();
 }

 return fileTags ;

 }

 /**
 * Gets the file contained in the object
 * @return The file contained in the object
 */
 public File getFile()
 {
 return file ;
 }

 /**
 * Gets the parsed file contained in the object
 * @return The file parsed contained in the object

185

 * in an array of String
 */
 public String[] getParsedFile()
 {
 return parsedFile ;
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;

 String eName = lName; // element name

 if ("".equals(eName)) eName = qName; // namespaceAware = false

// means that there are some security tags
if(eName.equals("Security")) secElementsFound =true ;

if(secElementsFound)
{

boolean foundSecElement = fileTags.checkElement(secCategory, eName , "YES IT IS")

;

 if (attrs != null)
 {
 for (int i = 0; i < attrs.getLength(); i++)
 {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);

fileTags.checkAttribute(secCategory, eName, aName, attrs.getValue(i)) ;

 }

 } // if attrs!=null

 if (attrs.getLength() > 0) nl();

}

 } // startElement

 public void endElement(String namespaceURI,

186

 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {

if((qName.equals("Security"))) secElementsFound = false ;

 indentLevel--;
 }

// ***
 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {

 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

187

/*

*** ************
 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import dbsection.* ;
import java.io.*;
import java.io.Writer ;

/**
 * The class FileTags is responsible to
 * create an object containing all the security
 * elements and attributes of the specific file
 * that belongs
 * @author Panos
 */

public class FileTags
{

 // Data Members
 String filename ;
 String[] secElement ={ "CIA-IUO" , "CLASSGUIDE" ,
 "COMSEC" , "COUNTRY-

ID",
 "NONUS-SEC","NOFORN"

 } ;

 String[] secElementValue ={ "empty" , "empty" , "empty" ,

 "empty",
 "empty" ,

 "empty" } ;

 String[] secAttribute ={"classification" , "nonUSmarkings" ,
 "SCIcontrols" ,

 "FGIsourceOpen" ,
 "FGIsourceProtected" ,

 "disseminationControls" ,
 "releasableTo" ,

 "nonICmarkings" } ;

 String[] secAttributeValue ={ "empty" , "empty" , "empty" ,

188

 "empty" , "empty" ,
 "empty" ,

 "empty" ,
 "empty" } ;

 File file ;

/**
 * The default constructor of the class
 * receives the passed File object and initializes
 * the parameter for itself
 * @param newFile The File object on which that FileTags
 * object is referred to
 */
 public FileTags(File newFile)
 {
 file = newFile ;
 }

 /**
 * Sets the name of the file
 * @param newFileName The new filename
 * @return void
 */
 private void setFileName(String newFileName)
 {
 filename = newFileName ;
 }

 /**
 * Gets file's security attributes contained in the object
 * @return The file's security attributes contained in the object
 */
 public String[] getSecAttributes()
 {
 return secAttribute ;
 }

 /**
 * Gets file's security attributes values contained in the object
 * @return The file's security attributes values contained in the object
 */
 public String[] getSecAttributeValues()
 {
 return secAttributeValue ;
 }

 /**
 * Checks the passed element if it is a
 * security element
 * @param category The element's category

189

 * @param newElement The element to b e checked
 * @param newElementValue The element's value
 * @return A boolean true if the element is a security element
 */
 public boolean checkElement(String category,
 String newElement ,
 String newElementValue)
 {
 boolean hasSecElements = false ;

 // check all the security elements to find if the newTag
 // is a security element
 for (int i=0; i< secElement.length ; i++)
 {
 if (secElement[i].equals(newElement))
 {
 secElementValue[i]= newElementValue ;
 hasSecElements = true ;
 }
 }

 return hasSecElements ;
 }

 /**
 * Checks the passed attribute if it is a
 * security attribute
 * @param category The attribute's category
 * @param newElement The element containing the attribute
 * @param newAttribute The attribute to be checked
 * @param newAttributeValue The attribute's value
 * @return void
 */
 public void checkAttribute(String category,
 String newElement ,
 String newAttribute ,
 String newAttributeValue)
 {
 boolean hasSecAttributes = false ;

 // check all the security attributes to find if the newAttribute
 // is a security element
 for (int i=0; i< secAttribute.length ; i++)
 {
 if (secAttribute[i].equals(newAttribute))
 {
 secAttributeValue[i]= newAttributeValue ;
 hasSecAttributes = true ;

 i=(secAttribute.length - 1) ;
 }

190

 }

 }

} // FileTags class ends here

191

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

*** ******************************
 */
package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.net.* ;
import java.util.* ;
import javax.activation.* ;

import dbsection.* ;

/**
 * The FindUrl class defines a servlet that is responsible to connect
 * the system with the requested server, to retrieve the
 * realesable files from that server and to decide which
 * of those files the user is allowed to access
 */
public class FindUrl extends HttpServlet implements Se rializable
{

 // Data Members
 private UserBean user ;
 private PrintWriter out ;
 private HttpServletRequest req;
 private HttpServletResponse res;

 private String selUrl;
 private String selectedUrl="nothingYet" ;
 private String permission="noneYet" ;
 private String authentication="noneYet" ;

 private static FileTags fileTags ;
 private static SecMetadataManager manager ;
 private boolean decision=false ;

 private File file ;
 // thisServer is kind of the login name of the server
 private String thisServer = "http://localhost:8080" ;
 private String thisServerPassword = "password" ;
 private Vector serverFoundFiles ;

192

 private Vector matchedFiles ;

 private String npsServer = "http://131.120.8.193:8080/metadata/servlet/"

;
 private String localServer = "http://localhost:8080/metadata/servlet/" ;
 private String server ;
 private String ReqFilename ;

 /**
 * Processing user's GET request by simply passing
 * the control to the doPost.
 * @param request The client's request.
 * @param response The response to the client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 this.doPost(request, response);
 return;
 } // end of doGet

 /**
 * Processing user's POST request.
 * @param req the client request.
 * @param res the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 // Initialization
 this.req = req;
 this.res = res;

 serverFoundFiles = new Vector() ;

 // get the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 user = (UserBean) session.getAttribute("user");

 // Get the user selections / server and filename
 server = req.getParameter("server") ;
 selectedUrl = req.getParameter("fileUrl");

193

 // "nothing" means that the request is coming from the other server
 if(selectedUrl.equals("nothing"))
 {
 // checks the authentication if it was succesfull
 authentication = req.getParameter("permission") ;
 ReqFilename = req.getParameter("filename") ;
 }

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

 //Generates the title
 out.println("<html><head><title>");
 out.println("Find the requested (URL) file servlet");
 out.println("</title></head>");

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 // Print the Personal and the security data
 printData();

 // connection established the available files presented
 if(authentication.equals("approved"))
 {
 out.println(" The total available files on the server " + server + "
 \n");

 for (int i=0; i<user.getAvaFiles().size() ; i++)
 {
 out.println(" *********** " + user.getAvaFiles().elementAt(i) + "
\n");
 }

 // find those files that have a matching filename
 matchedFiles = new Vector() ;
 matchedFiles = checkIfExist(ReqFilename);

 user.setAvaFiles(matchedFiles) ;

 String fileClass ;
 String file ;
 out.println(" Files containing " + ReqFilename + " /// user's classification is = "+

user.getServiceClass()+ "
\n");
 for (int i=0; i<matchedFiles.size() ; i++)
 {
 file = (String) matchedFiles.elementAt(i) ;
 fileClass= file.substring(0,2);

194

 // find the releasable files according to user's classification
 if(fileClass.equals(user.getServiceClass()))
 {
 out.println(" -------- " + matchedFiles.elementAt(i) + " ---- file class = " +

fileClass+ "
\n");
 }
 }

 String flag = "server" ;
 out.println("<a href='" + res.encodeURL("Op enFile?selFile=" + flag)
 + "'>" + " continue to open the file you want "+

"" + "
\n");

 }

 // initial stage. Trying to connect
 if(!selectedUrl.equals("nothing"))
 {
System.out.println(" inside inside initial Stage , server=" +server);
System.out.println(" inside inside initial Stage , selectedUrl =" + selectedUrl);

 if(server.equals("NPS")) server=npsServer ;
 if(server.equals("LOCAL")) server=localServer ;
 if(server.equals("OTHER")) server=selectedUrl ;

System.out.println(" inside inside initial Stage , after if server=" +server);

 getConnected(server) ;
 }

 exitLinks(); // Create and print the links to other servlets

 out.println("</body></html>");
 }// doPost ends here

 /**
 * Starts a new connection with the associated server
 * @param server The associated server to be connected
 * @return void.
 * @exception Exception.
 */
 private void getConnected(String server)
 {
 try
 {
 HttpSession session = req.getSession(true);
 if(!session.isNew())
 {
 // Ensure the session is newly created
 session.invalidate();
 session = req.getSession(true);

195

 }

 // Attach customer bean to this session object
 session.setAttribute("user", user);

 res.sendRedirect(res.encodeRedirectURL(server
 + "dbsection.ServerLogin?serverID="
 + thisServer + "&password="
 + thisServerPassword + "&filename="
 + selectedUrl + "&server=" + server))

;

 }
 catch (Exception e)
 { // openConnection() failed
 System.out.println(" IOException " + e);

 }

 }

 /**
 * Starts a new session after a customer is correctly authenticated.
 * @return void.
 * @exception Exception.
 */
 private void startSession() throws Exception
 {

 // The next servlet is called
 // Get the dispatcher
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(server
 + "dbsection.ServerLogin?serverID="
 + thisServer + "&password="
 + thisServerPassword + "&filename="
 + selectedUrl + "&server=" + server);

 if (dispatcher == null)
 {
 // No dispatcher means the given file could not be found
 // response.sendError(response.SC_NO_CONTENT);
 }
 else
 {
 // Get or start a new session for this user
 HttpSession session = req.getSession(true);
 if(!session.isNew())
 {
 // Ensure the session is newly created
 session.invalidate();

196

 session = req.getSession(true);
 }

 // Attach customer bean to this session object
 session.setAttribute("user", user);

 // Pass control to a different page
 dispatcher.forward(req, res);
 }

 } // end of startSession()

// *** ******
 /**
 * Checks the passed filename if exist within the name of the files
 * @return A Vector containing the found files.
 * @exception Exception.
 */

 private Vector checkIfExist(String fileName)
 {
 String possibleFile;
 String testStr ;
 Vector matchingFiles = new Vector() ;
 int widthS = fileName.length() ;

 Enumeration enum = user.getAvaFiles().elements() ;
 // check every element of the serverFoundFiles Vector
 while(enum.hasMoreElements())
 {
 possibleFile = (String) enum.nextElement();
 int widthB = possibleFile.length() ;

 for(int i=0; i<widthB-widthS ; i++)
 {
 testStr = possibleFile.substring(i, i+widthS) ;
 if(testStr.equals(fileName))

 // found
 {
 matchingFiles.add(possibleFile);

 // store the file
 i=widthB-widthS ;

 // stop the loop
 }

 } // for loop // searching the possibleFile

 } // while loop // searching the elements of the Vector

 // add at the end of the Vector the name of the server

197

 // who holds those files
 matchingFiles.add(server) ;

 return matchingFiles ;
 }

 private void exitLinks()
 {
 out.println("

\n");

 out.println("<a href='" + res.encodeURL("/metadata/html/login.htm")
 + "'>" + "login again as another user "+ "" + " or "+

"
\n");
 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + " see again your options"+ "" + "
\n");

 }

 /**
 * Prints the user's personal and Security data
 * retrieved from the database that contained
 * in the UserBean object
 * @return void.
 */
 private void printData()
 {
 out.println("<h3>" + " Personal Data " + "</h3>");
 out.println("Last Name :" + " " +

user.getLastName() + "
\n" +
 "First Name :" + " " +

user.getFirstName() + "
\n");

 out.println("" + " Security Attributes (presented here only for

demo)" + "
\n");
 out.println(" Service Name :" + " " +
 user.getServ iceName() + "
\n" +
 " Service Position:" + " " +
 user.getServicePos() + "
\n" +
 " Service Classification:" + " "+
 user.getServiceClass() + "
\n" +
 " Country ID:" + " " +
 user.getCountryId() + "
\n"

);
 }

}// FindUrl class ends here

198

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.* ;
import javax.activation.* ;
import java.awt.* ;
import java.* ;

/**
 * The ImportFile class defines a servlet that is responsible to
 * create a web page to help user input the file and the server
 * where that file is located in order to open it.
 */
public class ImportFile extends HttpServlet
{

 // Data Members
 private UserBean freshuser ;
 private Vector avaFiles ;
 private PrintWriter out ;
 private HttpServletRequest req;
 private HttpServletResponse res;

 /**
 * Processing user's POST request.
 * @param req the client request.
 * @param res the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 // Initialization
 this.req = req;
 this.res = res;

199

 // get the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 freshuser = (UserBean) session.getAttribute("user");

 // Get the user selection from t he request
 String FileMenu = req.getParameter("FileMenu");

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

 //Generates the title
 out.println("<html><head><title>");
 out.println("Import File Selection");
 out.println("</title></head>");

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 // Prints the personal and the security data
 printData();

 // this form gets the url
 out.println("<form action='FindUrl' method='POST' > ");

 // creates the text box and the submit button
 inputUrl();

 out.println("</form>");

 // Create and print the links to other servlets
 exitLinks();

 out.println("</body></html>");

 }// doGet ends here

 /**
 * Displays the available links to direct control
 * in another servlet, in case the user
 * wants to cancel this procedure
 * @return void.
 */
 private void exitLinks()
 {
 out.println("<a href='" + res.encodeURL("/metadata/html/login.htm")
 + "'>" + "login again as another user "+ "" + " or "+ "
 \n");

200

 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + " see again your options"+ "" + "
\n");

 }

 /**
 * Creates the necessary radio buttons for the
 * server's selection, the text field to get the
 * file and the buttons
 * to clear the field or to submit the filename
 * @return void.
 */
 private void inputUrl()
 {
 String fileUrl="NOT_SELECTED" ;

 out.println(" Choose the server to find the file
\n");
 out.println(" <input type='radio' name='server' value='NPS' checked > NPS ");
 out.println(" <input type='radio' name='server' value='LOCAL' > LOCAL ");
 out.println(" <input type='radio' name='server' value='OTHER' > OTHER ");
 out.println(" and then give the filename or just a word" +
 " contained in the filename
\n");

 out.println(" <p> <input type='text' size='40' name='fileUrl' >");
 out.println(" <input type='submit' value='Submit' name='B1'> ");
 out.println(" <input type='reset' value='Reset' name='B2'></p> ");

 }

 /**
 * Prints the user's personal and Security data
 * retrieved from the database that contained
 * in the UserBean object
 * @return void.
 */
 private void printData()
 {
 out.println("<h3>" + " Personal Data " + "</h3>");
 out.println("Last Name :" + " " +

freshuser.getLastName() + "
\n" +
 "First Name :" + " " +

freshuser.getFirstName() + "
\n");

 out.println("" + " Security Attributes (presented here only for demo)"

+ "
\n");
 out.println(" Service Name :" + " "

+ freshuser.getServiceName() + "
\n"
+ " Service Position:" + " "
+ freshuser.getServicePos() + "
\n"
+ " Service Classification:" + " "+

201

 freshuser.getServiceClass() + "
\n"
 +

 " Country ID:" + " "
 +

 freshuser.getCountryId() + "
\n"
);

 }

}// ImportFile class ends here

202

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.* ;
import java.awt.* ;

/**
 * The ImportToSave class defines a servlet that is responsible to
 * create a web page to help user input the file to be saved,
 * as well as some information related to the file
 *
 */
public class ImportToSave extends HttpServlet implements Serializable
{

 // ******* Data Members
 private UserBean sessionuser ;
 private Vector avaFiles ;
 private PrintWriter out ;
 private HttpServletRequest req;
 private HttpServletResponse res;

 private String[] classifi = {"TS" , "SE" , "CL" , "UN" } ;
 private String[] countries = {"ALL", "NOFORN", "NATO", "GRE",

"FRA", "RUS" } ;

 /**
 * Processing user's GET request by simply passing
 * the control to the doPost.
 * @param request The client's request.
 * @param response The response to the client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {

203

 // Simply pass pass control to doPost()
 this.doPost(request, response);
 return;
 } // end of doGet

 /**
 * Processing user's POST request.
 * @param req the client request.
 * @param res the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException,IOException
 {

 // Initialization
 this.req = req;
 this.res = res;

 // g et the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 sessionuser = (UserBean) session.getAttribute("user");

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

 //Generates the title
 out.println("<html><head><title>");
 out.println("Create new XML file ");
 out.println("</title></head>");

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 out.println("<FORM ACTION='SaveFile' method='POST'

ENCTYPE='multipart/form-data' > ");

 // Print the Personal and the security data
 printStandardMetadata();

 // input/browse the file from the user
 inputFile() ;

 // Create and print the links to other servlets

204

 exitLinks();

 out.println("</FORM>");
 out.println("</body></html>");

 }// doGet ends here

 /**
 * Displays the available links to direct control
 * in another servlet, in case the user
 * wants to cancel this procedure
 * @return void.
 */
 private void exitLinks()
 {
 out.println("<a href='" + res.encodeURL("/metadata/html/login.htm")
 + "'>" + "login again as another user "+ "" + " or "+

"
\n");
 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + " see again your options"+ "" + "
\n");

 }

 /**
 * Creates the necessary text field to help
 * the user to input the file and the buttons
 * to clear the field or to submit the filename
 * @return void.
 */
 private void inputFile()
 {
 out.println("Enter the file below:
 ");
 out.println("<INPUT TYPE='file' NAME='fileName' >");
 out.println("<INPUT TYPE='submit' VALUE='Upload file to the server' >");
 out.println("<INPUT TYPE='reset' VALUE='Clear field' >" + "
 \n");

 }

 /**
 * Prints the user's personal and security data
 * that will appended to the file as its metadata.
 *
 * @return void.
 */
 private void printStandardMetadata()
 {
 Date newDate = new java.util.Date() ;
 // create the table with the standard data
 out.println(" <div align='center'> <center> <table border='2' width='90%'> ");
 // fill in the rows with the known data
 tableRow("CLASSIFIED BY", " " , "DATE ", newDate.toString());

205

 tableRow("Last Name ", sessionuser.getLastName() ,
 "First Name ",

 sessionuser.getFirstName()) ;
 tableRow("User Service ", sessionuser.getServiceName() ,
 "Position in Service ",sessionuser.getServicePos())

 ;
 tableRow("User Classification ",sessionuser.getServiceClass() ,
 "User Country ID ", sessionuser.getCountryId());

 tableRow("File Classification ", dropDownClass(

sessionuser.getServiceClass()) ,
 "Release to Countries", dropDownCountry(

sessionuser.getCountryId()));

 tableRow("For Official Use Only " ,
 "<INPUT TYPE='radio' NAME='FOUO' value='yes' CHECKED >yes"

+
 "<INPUT TYPE='radio' NAME='FOUO' value='no'>no" ,
 "For Internal Use Only " ,
 "<INPUT TYPE='radio' NAME='FIUO' valu e='yes' CHECKED >yes" +
 "<INPUT TYPE='radio' NAME='FIUO' value='no'>no");

 out.println(" </table> </center> </div>");

 out.println("<p align='center'>" + "Before you submit your XML file

you"
 + " have to complete ALL the METADATA fields

below" + " </p>");

 } // end of printStandardMetadata ******************

 /**
 * This method creates the allowed options in the drop down list
 * for the classification selection of the file
 * @param userClass The classification of the user,
 * which will be the maximum allowed for the file
 * @return The allowed classifications for the file
 */
 private String dropDownClass(String userClass)
 {
 // convert user's classification to a number
 int level = 3 ;
 if(userClass.equals("TS")) level = 0 ;
 if(userClass.equals("SE")) level = 1 ;
 if(userClass.equals("CL")) level = 2 ;

 String dropDown = " <SELECT NAME='Class'> " ;

 for (int i=level; i<4 ;i++)
 {
dropDown = dropDown + "<OPTION VALUE=" + classifi[i] + ">" + classifi[i] ;

206

 }

 dropDown = dropDown + " </SELECT> " ;
 return dropDown ;
 }

 /**
 * This method creates the allowed options in the drop down list
 * for the releasable countries of the file
 * @param userClass The country of the user,
 * @return The allowed countries for the file
 */
 private String dropDownCountry(String userCountry)
 {
 String dropDown = " <SELECT NAME='Countries'> " ;

 for (int i=0; i<countries.length ;i++)
 {
 dropDown = dropDown + "<OPTION VALUE=" + countries[i] + ">" +

countries[i] ;

 }
 dropDown = dropDown + " </SELECT> " ;

 return dropDown ;
 }

 /**
 * This method displays the passed parameters
 * in a table row with specific dimensions
 * @param firstColumn The first column of the ro w
 * @param secondColumn The second column of the row
 * @param thirdColumn The third column of the row
 * @param fourthColumn The fourth column of the row
 * @return void
 */
 private void tableRow(String firstColumn , String secondColumn ,
 String thirdColumn , String forthColumn)
 {
 out.println("<tr> <td width='15%'> " + firstColumn + " </td> "

);
 out.println(" <td width='35%'> " + secondColumn + " </td> ");
 out.println(" <td width='15%'> " + thirdColumn + " </td> ");
 out.println(" <td width='35%'> " + forthColumn + " </td> </tr> "

);

 }

}// ImportToSave class ends here

207

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */

package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import java.sql.*;
import dbsection.*;

/**
 * The class Login defines a servlet that is responsible to authenticate
 * users trying to login. Upon positive authentication,
 * a n ew user session is created with two attached beans: the customer
 * bean and the database connection module.
 * @author Panos
 */
public class Login extends HttpServlet
{
 // Data members
 private final int DRIVER_ERROR = 1;
 private final int CONNECTION_ERROR = 2;
 private final int QUERY_ERROR = 3;
 private final int QUERY_ERROR_EXC = 5;
 private final int INVALID_USER = 4;

 private HttpServletRequest request;
 private HttpServletResponse response;
 private Connection connection;
 private PrintWriter out;
 private ResultSet rs;
 private ResultSet rs2;

 private DBConnectionBean dbBean;
 private String curServiceName ="non";
 private String curServicePos ="non" ;
 private String curServiceClass ="non";
 private String curUserCountryId ="non";
 private int curUserId =0 ;

208

 private Exception dbe;
 private UserBean user ;
 private Vector avaFiles ;

 /**
 * One-time initilization of the servlet. If the Connection Module is not
 * yet initiated, it ensures its creation.
 * @param config local server configuration parameters.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 */
 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);

 rs = null; // for the result set

 DBConnectionBean dbBean =
 (DBConnectionBean)getServletContext().getAttribute("connectionBean");
 if(dbBean == null)
 {

 dbBean = new DBConnectionBean(); // for the connection module
 dbBean.setDriver("sun.jdbc.odbc.JdbcOdbcDriver");
 dbBean.setUrl("jdbc:odbc:UserDB");
 dbBean.setUser("panos");
 dbBean.setPassword("greek");

 // Load the driver
 if(!dbBean.isLoaded())
 {
 exitPoint(DRIVER_ERROR);
 }

 }

 this.dbBean = dbBean;

 getServletContext().setAttribute("connectionBean", dbBean);

 } // end of init()

 /**
 * Processing user's POST request by simply passing
 * the control to the doGet.
 * @param request The client's request.
 * @param response The response to the client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */

209

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Simply pass pass control to doGet()
 this.doGet(request, response);
 return;
 } // end of doPost

 /**
 * Processing user's GET request.
 * @param request the client request.
 * @param response the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Initialization
 this.request = request;
 this.response = response;

 response.setContentType("text/html");

 out = response.getWriter();

 // Get the login parameters from the request
 String name = request.getParameter("userID");
 String password = request.getParameter("password");

 validateUser(name, password);

 } // end of doGet()

 /**
 * Authenticates a user with the given username & password
 * @param name The user's username.
 * @param password The user's password.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a servlet error encountered
 */

 private void validateUser(String name, String password)
 {
 // query the database
 rs = dbBean.query(
 "SELECT * " +
 "FROM User " +
 "WHERE LoginName = '" + name + "' " +

210

 "AND Password = '" + pass word + "'");

 try
 {
 if(rs.next())
 {
 // Successful user login
 findNamePos(name, password);

 // initializes the Vector for the files
 avaFiles = new Vector();

 findFiles(curServiceName, curServicePos, curServiceClass,

curUserCountryId);

 // start the session
 startSession();
 }
 else
 {
 // Invalid login data
 exitPoint(INVALID_USER);
 }

 rs.close(); // close the ResultSet

 }
 catch(Exception e)
 {
 exitPoint(QUERY_ERROR_EXC);

 }

 } // end of validateUser()

 /**
 * Finds the Security authorizations of a valid user
 * @param name The user's username.
 * @param password The user's password.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a servlet error encountered
 */
 private void findNamePos(String name, String password)
 {
 ResultSet rs3=dbBean.query(
 "SELECT * " +
 "FROM User " +
 "WHERE LoginName = '" + name + "' " +

211

 "AND Password = '" + password + "'");
 try
 {
 if(rs3.next())
 {
 curServiceName = rs3.getString("ServiceName") ;
 curServicePos = rs3.getString("ServicePos") ;
 curServiceClass = rs3.getString("ServiceClass") ;
 curUserCountryId = rs3.getString("CountryId") ;
 curUserId = Integer.parseInt(

rs3.getString("UserID")) ;
 }
 }
 catch(Exception e)
 {
 exitPoint(QUERY_ERROR_EXC);
 dbe = e ;
 }
 }

 /**
 * Finds the files that are available to a specific user according
 * to his/her security authorizations
 * @param service The user's service
 * @param position The user's position in his or her service
 * @param clearance The user's clearance (Unclassified, Classified etc.)
 * @param country The user's country
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of an I/O error encountered
 */
 private void findFiles(String service, String position,
 String clearance, String country)
 {
 // retrieve the available files according to the below criteria
 ResultSet rs4=dbBean.query(
 "SELECT * " +
 "FROM File " +
 "WHERE UserServiceName = '" + service + "'" +
 "AND UserServicePos = '" + position + "'" +
 "AND UserServiceClass = '" + clearance + "'" +
 "AND UserCountryId = '" + country + "'");
 try
 {
 while(rs4.next())
 {
 avaFiles.add(rs4.getString("File")) ;
 }
 }
 catch(Exception e)
 {

212

 exitPoint(QUERY_ERROR_EXC);
 }

 } // findFiles

 /**
 * Starts a new session after a user
 * is succefully authenticated.
 * @return void
 * @exception Exception In case of an invalid situation is encountered
 */
 private void startSession() throws Exception
 {

 // The next servlet to be called through a RequestDispatcher object
 // Get the dispatcher
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher("/UserOptions");

 if (dispatcher == null)
 {
 // No dispatcher means the given file could not be found
 response.sendError(response.SC_NO_CONTENT);
 }
 else
 {
 // Get or start a new session for this user
 HttpSession session = request.getSession(true);
 if(!session.isNew())
 {
 // Ensure the session is newly created
 session.invalidate();
 session = request.getSession(true);
 }

 // get all the data from the database and create a new User object
 user = createUser() ;

 // Close the database connection
 dbBean.isClose();

 // Attach customer bean to this session object
 session.setAttribute("user", user);

 // Pass control to a different page
 dispatcher.forward(request, response);
 }

 } // end of startSession()

 /**

213

 * Creates a new userBean object from the
 * information retrieved from the database.
 * @return A UserBean object containg all the user's data is returned.
 * @exception Exception In the case of an invalid data
 */

 private UserBean createUser() throws Exception
 {
 UserBean user = new UserBean();

 user.setUserID(rs.getInt("UserID"));
 user.setFirstName(rs.getString("Fname"));
 user.setMiddleInitial(rs.getString("Mi"));
 user.setLastName(rs.getString("Lname"));
 user.setStreet(rs.getString("Street"));
 user.setCity(rs.getString("City"));
 user.setZip(rs.getString("Zip"));
 user.setState(rs.getString("State"));
 user.setPhone(rs.getString("Phone"));
 user.setLoginName(rs.getString("LoginName"));
 user.setPassword(rs.getString("Password"));
 user.setEmail(rs.getString("Email"));

 user.setServiceName(rs.getString("ServiceName"));
 user.setServicePos(rs.getString("ServicePos"));
 user.setServiceClass(rs.getString("ServiceClass"));
 user.setCountryId(rs.getString("CountryId"));

 user.setAvaFiles(avaFiles) ;

 return user;
 }

 /**
 * Defines several types of exit conditions
 * depending on the specified error
 *
 * @param exitCondition That integer specifies the error causes the exit.
 * @return void.
 */
 private void exitPoin t(int exitCondition)
 {
 String output = new String();

 switch(exitCondition)
 {
 case CONNECTION_ERROR:
 output += "Application error: unable to establish connection to database";
 break;

 case QUERY_ERROR:

214

 output += "Application error: invalid database query";
 break;

 case INVALID_USER:
 output += "Invalid username and/or password";
 break;

 default:
 output += "Application error";

 } // end switch

 out.println("<body bgcolor=\"#fafca3\">");
 out.println("<H3>Metadata Security Label Tags Authentication Process</H3>");

 out.println("" + "*** ERROR ENCOUNTERED

*** " + "
\n");
 out.println(output + "
\n");
 out.println("Please choose from the following" + "" +

"
\n");

 out.println("<a href='" +

response.encodeURL("/metadata/html/login.htm")
 + "'>" + "Try to login again "+ "" +

"
\n");

 out.println("<a href='" +

response.encodeURL("/metadata/html/main.htm")
 + "'>" + "Home page"+ "" + "
\n");

 out.println("<P>\n");
 out.println("</BODY>\n");
 out.println("</HTML>");

 } // end of exitPoint()

} // end of Login class

215

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import java.sql.*;

/**
 * This class defines a servlet that logout
 * a user and end his/her session.
 * @author Panos
 */
public class Logout extends HttpServlet
{
 // Data members
 private final int ERROR_SESSION = 1;
 private HttpServletRequest request;
 private HttpServletResponse response;
 private PrintWriter out;
 private ResultSet rs;
 private DBConnectionBean dbBean;
 private CustomerBean customer;
 private String output = new String();

 /**
 * Processing user's POST request by simply passing
 * the control to the doGet.
 * @param request The client's re quest.
 * @param response The response to the client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Simply pass pass control to doGet()
 this.doGet(request, response);
 return;

216

 } // end of doPost

 /**
 * Processing user's GET request.
 * @param request the client request.
 * @param response the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Startup settings
 this.request = request;
 this.response = response;

 // Sets the content type to html text
 response.setContentType("text /html");

 // Gets the PrintWriter object for sending HTML commands
 out = response.getWriter();

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 output = "";
 processRequest();

 } // end of doGet()

 /**
 * Processing the request for logging the user out
 * and terminating the current user session.
 * @return void
 */
 private void processRequest()
 {
 // Terminate the session for this user
 HttpSession session = request.getSession(false);
 if(session != null)
 {
 session.invalidate();
 }

 out.println("Thank you for using Metadata Security Label Tags System."

+ "
\n");

 exitLinks();

217

 } // end of processRequest()

 /**
 * Displays the available links to d irect control
 * in another page, in case the user
 * wants to discontinue the session
 * @return void.
 */
 private void exitLinks()
 {
 out.println("

\n");
 out.println("<a href='" +

response.encodeURL("/metadata/html/main.htm")
 + "'>" + "Home page"+ "" + "
\n");

 out.println("<a href='" +

response.encodeURL("/metadata/html/login.htm")
 + "'>" + "Login again as another user "+ ""

+ " or "+ "
\n");
 }

} // end of Logout class

218

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import java.io.*;
import java.io.Writer ;

/**
 * The MetaTags class codes the tags of
 * a file as an object
 * @author Panos
 */
public class M etaTags
{

 String[] parsedFile ;
 int index ;

/**
 * The default constructor of the class
 * initializes the variables.
 */
 public MetaTags()
 {
 parsedFile = new String[120] ;
 index=0 ;

 }

/**
 * Gets the tags of the parsed file
 * @return An array of String representing
 * the tags of the file
 */
 public String[] getParsedFile()
 {
 return parsedFile ;
 }

/**
 * Adds a new tag passed as the parameter
 * @param newString The new tag to be added

219

 * @return void
 */
 public void add(String newString)
 {
 index = index +1 ;
 parsedFile[index] = newString ;
 }

}

220

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */

package dbsection;

import javax.servlet .*;
import javax.servlet.http.*;
import java.io.*;
import java.util.* ;
import java.sql.*;

/**
 * The class OpenFile defines a servlet that is responsible to
 * open any file a user may select either the file is saved
 * locally or in another server
 * @author Panos
 */

public class OpenFile extends HttpServlet
{

 // Data Members
 private UserBean newuser ;

 private Vector avaUNFiles ;
 private Vector avaCLFiles ;
 private Vector avaSEFiles ;
 private Vector avaTSFiles ;

 private PrintWriter out ;
 private DBConnectionBean dbBean ;

 private String[] classification = {"UN" , "CL" ,"SE" , "TS" } ;
 private String[] date = new String [10] ;

 private HttpServletRequest req;
 private HttpServletResponse res;

 private String selFile ;
 private String classif ;
 private String action ;
 private String otherServer ;

221

 private Vector avaFiles ;

 /**
 * Processing user's GET request by simply passing
 * the control to the doPost.
 * @param request The client's request.
 * @param response The response to the client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Simply pass pass control to doPost()
 this.doPost(request, response);
 return;
 } // end of doGet

 /**
 * Processing user's POST request.
 * @param request the client request.
 * @param response the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {

 // Initialization
 this.req = req;
 this.res = res;

 // get the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 newuser = (UserBean) session.getAttribute("user");

 // Get the user selection from the request
 String FileMenu = req.getParameter("FileMenu");

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

222

 //Generates the title
 out.println("<html><head><title>");
 out.println("User Options !!!!!");
 out.println("</title></head>");

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 // Print the Personal and the security data
 printData();

 selFile = req.getParameter("selFile");
 classif = req.getParameter("classification");
 action = req.getParameter("action");

 // this is the first time passing the serv let
 // from the local server
 if(selFile.equals("start"))
 {
 // Print the avaliable files for the specific user
 printAvaFiles();
 }

 // this is the first time passing the servlet
 // from another associated server
 else if (selFile.equals("server"))
 {
 // Print the avaliable files sent by the other server
 printServerAvaFiles();
 }

 // this is the second time passing the servlet
 // so give the choises how to open the files on local server
 else if (action.equals("menu"))
 {
 out.println("
\n" + "Selected file : " + selFile + "
\n");
 out.println("If you want to open the file with your own XML Editor " +

"
\n");
 out.println("or to save it for future use ");
 out.println("<a href='" + res.encodeURL("/metadata/xml/" + classif + "/"

+ selFile)
 + "'>" + " click here "+ "
\n");

 action = "startEditor" ;

 out.println("
\n" + "If you want to open the file with an applet -based XML

Editor "
 + "
\n");

 out.println("<a href='" + res.encodeURL("OpenFile?classification="

223

 + classif + "&action=" + action + "&selFile="+
selFile)

 + "'>" + " click here " + "
\n");
 }

 // this is the second time passing the servlet
 // so give the choises how to open the files on the associated server

 else if (action.equals("menuServer"))
 {

 out.println("
\n" + "Selected file : " + selFile + "
\n");

out.println("If you want to open the file with your own XML Editor " + "
 \n");
 out.println("or to save it for future use ");

 // get the last element which contains the name of the parent server
 otherServer = (String) avaFiles.lastElement() ;
 otherServer = otherServer.substring(0 , otherServer.length() -8) ;
 selFile = selFile.substring(2,selFile.length()) ;

out.println(" **** server name = " + otherServer + " = clasiff = " + classif);
out.println(" = and the filename is = " + selFile);
out.println("<a href='" + res.encodeURL(otherServer + "xml/" + classif + "/" + selFile)
 + "'>" + " click here "+ "
\n");

 action = "startEditor" ;

out.println("
\n" + "If you want to open the file with an applet -based XML Editor "
 + "
\n");
out.println("<a href='" + res.encodeURL("OpenFile?classification="
 + classif + "&action=" + action + "&selFile="+ selFile)
 + "'>" + " click here " + "
\n");

 }

 // this is the final time passing the servlet
 // which simply initiates the applet based XML Editor
 else
 {
 startEditor(classif, selFile) ;
 }

 // print the exit options
 out.println("<a href='" + res.encodeURL("/metadata/html/login.htm")
 + "'>" + "login again as another user "+ "
\n" +

" or ");
 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + " see again your options"+ "" + "
\n");
 out.println("</body></html>");

224

 }// doGet ends here

 /**
 * Calls the applet that will in turn
 * load and initiate the applet-based XML editor
 * @param classLevel The classification level of the user that will help
 * find the directory where the file is saved.
 * @param sFile The name of the file that the editor will open
 * @return void.
 */
 private void startEditor(String classLevel , String sFile)
 {
 out.println("<applet codebase=/metadata/applets/ code=MainApplet.clas s

width=10 height=10>");

 out.println("<PARAM NAME=reqUrl VALUE='

http://localhost:8080/metadata/xml/"
 + classLevel + "/" + sFile + " '>");

 out.println("</applet>
\n");
 }

 /**
 * Converts user's classification to a number
 * @param classification The classification level of the user
 * @return An integer number representing the user's classification
 */
 private int getClassLevel(String classification)
 {
 // convert user's classification to a number
 int level = 0 ;
 if(classification.equals("TS")) level = 3 ;
 if(classification.equals("SE")) level = 2 ;
 if(classification.equals("CL")) level = 1 ;

 return level ;
 }

 /**
 * This method gets the available files passed
 * from the associated server and present th em
 * to the user according to his/her classification
 * @return void
 */
 private void printServerAvaFiles()
 {
 out.println("Click on the links below to open the respective file " + "
 \n");

 // initialize a Vector to get them
 avaFiles = new Vector() ;

225

 // user allowed to see files only up to his/her classification
 for (int i=0; i<= getClassLevel(newuser.getServiceClass()) ; i++)
 {
 avaFiles = newuser.getAvaFiles() ;

 String aFile;
 String action = "menuServer" ;

 // get the last element which contains
 // the name of the parent server
 otherServer = (String) avaFiles.lastElement() ;

 out.println("<hr/>");
 out.println("Files at " + otherServer + " with classification :"
 + classification[i] + "
\n");

 for(int j=0; j<avaFiles.size() - 1 ; j++)
 {
 aFile = (String) avaFiles.elementAt(j) ;

 if(getClassLevel(aFile.substring(0,2)) == i)
 {
 date = findVersion(aFile) ;

 out.println("<a href='" +

res.encodeURL("OpenFile?classification="
 + classification[i] +

"&action=" + action
 + "&selFile="+ aFile) +

"'>" + date[6] + "");

 out.println(".....Version Date : " + date[0] + "/" + date[1]
 + "/" + date[2]);
 out.println(".....time : " + date[3] + ":" + date[4] + ":"
 + date[5] + "
\n");
 }

 } // j loop

 } // i loop

 // insert a horizontal line
 out.println("<hr/>");

 } // printServerAvaFiles ends here

 /**
 * This method gets the availa ble files through
 * the findFiles method and display them
 * to the user according to his/her classification
 * @return void

226

 */
 private void printAvaFiles()
 {
 out.println("Click on the links below to open the respective file " + "
 \n");

 // initialize a Vector to get them
 Vector avaFiles = new Vector() ;
 // opens a connection to the database
 // to make the query and retrieve the most
 // updated files
 openConnection() ;

 // user allowed to see files only up to his/her class ification
 for (int i=0; i<= getClassLevel(newuser.getServiceClass()) ; i++)
 {

 avaFiles = findFiles (newuser.getServiceName() ,

newuser.getServicePos() ,
 classification[i] ,

newuser.getCountryId()) ;

 String aFile;
 String action = "menu" ;
 Enumeration enum = avaFiles.elements();

 out.println("<hr/>");
 out.println("Files with classification :" + classification[i] + "
\n");

 while(enum.hasMoreElements())
 {
 aFile = (String) enum.nextElement();
 date = findVersion(aFile) ;

 out.println("<a href='" +

res.encodeURL("OpenFile?classification="
 + classification[i] + "&action="

+ action
 + "&selFile="+ aFile) + "'>" +

date[6] + "");

 out.println(".....Version Date : " + date[0] + "/" + date[1] + "/" +

date[2]);
 out.println(".....time : " + date[3] + ":" + date[4] + ":" + date[5] +

"
\n");
 } // while loop ends here

 } // i loop ends here

 // insert a horizontal line
 out.println("<hr/>");

227

 } // printAvaFiles ends here

 /**
 * This method analyses the filename to extract
 * the date and the time, the file saved in the system
 * which actually represents the version of the file.
 * @param fullName The complete name of the file
 * @return An array of string containing the date and the time
 */
 private String[] findVersion(String fullName)
 {
 char letter ;
 int x =0 ;
 String[] date = {"", "", "", "", "", "", "" } ;

 for(int i=0; i<fullName.length() ; i++)
 {
 letter = fullName.charAt(i) ;

 if (letter != '~') date[x] = date[x] + fullName.substring(i, i+1) ;
 else if (letter == '~') x++ ;

 }

 return date ;
 }

 /**
 * Finds the files that are available
 * to a specific user according to his security
 * authorizations
 * @param service The user's service
 * @param position The user's position in his or her service
 * @param clearance The user's clearance (Unclassified, Classified etc.)
 * @param country The user's country
 * @exception Exception In case of a error encountered
 * @return void.
 */

 private Vector findFiles(String service, String position,
 String

clearance, String country)
 {
 Vector avFiles = new Vector() ;

 // retrieve the available files according to the below criteria
 ResultSet rs=dbBean.query(
 "SELECT * " +
 "FROM File " +
 "WHERE UserServiceName = '" + service + "'" +
 "AND UserServicePos = '" + position + "'" +

228

 "AND UserServiceClass = '" + clearance + "'" +
 "AND UserCountryId = '" + country + "'");

 try
 {

 while(rs.next())
 {
 avFiles.add(rs.getString("File")) ;
 }
 }
 catch(Exception e)
 {
 out.println("The system could not process your request ");
 out.println(" due to an exception occured. Please try again " + "
\n");

 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + "Go back to your options"+ "" + "
\n");

 }

 return avFiles ;

 } // findFiles

 /**
 * Opens a connection with the database to retrieve
 * the files that are available to the user
 * @return void
 */
 private void openConnection()
 {

 dbBean =

(DBConnectionBean)getServletContext().getAttribute("connectionBean");
 if(dbBean == null)
 {

 dbBean = new DBConnectionBean(); // for the connection module
 dbBean.setDriver("sun.jdbc.odbc.JdbcOdbcDriver");
 dbBean.setUrl("jdbc:odbc:UserDB");
 dbBean.setUser("panos");
 dbBean.setPassword("greek");

 // Load the driver
 if(!dbBean.isLoaded())
 {
 out.println("The system could not process your request ");
 out.println(" due to an error to the Database Driver."
 + " Please try again " + "
\n"

);

229

 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + "Go back to your options"+ "" + "
\n");
 }
 }

 this.dbBean = dbBean;

 getServletContext().setAttribute("connectionBean", dbBean);
 }

 /**
 * Prints the user's personal and Security data
 * retrieved from the database that contained
 * in the UserBean object
 * @return void.
 */
 private void printData()
 {
 out.println("<h3>" + " Personal Data " + "</h3>");
 out.println("Last Name :" + " " +
 newuser.getLas tName() + "
\n" +
 "First Name :" + " " +
 newuser.getFirstName() + "
\n");

out.println("" + " Security Attributes (presented here only for demo)" +
 "
\n");
out.println(" Service Name :" + " " +
 newuser.getServiceName() + "
\n" +
 " Service Position:" + " " +
 newuser.getServicePos() + "
\n" +
 " Service Classification:" + " "+
 newuser.getServiceClass() + "
\n" +
 " Country ID:" + " " +
 newuser.getCountryId() + "
\n");
 }

}// OpenFile class ends here

230

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */
package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.net.* ;
import java.util.* ;
import javax.activation.* ;
import dbsection.* ;

/**
 * The SaveFile class is responsible to upload the file
 * from the user's machine to a temporary area of the system
 * and to check and parse the file
 *
 */
public class SaveFile extends HttpServlet implements Serializable
{

 // Data Members
 private UserBean user ;
 private HttpServletRequest req;
 private HttpServletResponse res;

 private String uploaded;
 private File selectedFile ;
 private File file ;
 private PrintWriter out ;

 private int MAXIMUM_FILE_LINES = 300 ;
 private boolean decision=false ;
 private String desiredClass = null ;
 private String desiredCountry = null ;
 private String fouo = null ;
 private String fiuo = null ;

 private String tempFile ;
 private String filename ;
 private String ending ;
 private String errorState ;

231

 private String [] fileSecAttr ;

 static FileTags fileTags ;
 static SecMetadataManager manager ;

 /**
 * Processing user's POST request.
 * @param request The client request.
 * @param response The response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 // Initialization
 this.req = req;
 this.res = res;

 // get the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 user = (UserBean) session.getAttribute("user");

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

 //Generates the title
 out.println("<html><head><title>");
 out.println("Get the User's File to Save it --- servlet");
 out.println("</title></head>");

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 // Print the Personal and the security data
 printData();
 errorState ="" ;

 try
 {
 out.println(" ..." + "
\n");
 out.println(" Uploading file to the server side" + "
\n");

 uploaded = uploadFile() ;
 }

232

 catch (IOException e)
 {
 // go back in case the file is NOT an XML
 errorGoBack("COULD NOT BE UPLOADED DUE TO A COMMUNICATION

PROBLEM ") ;
 }

 // If everything was fine
 if(errorState.equals(""))
 {
 out.println("File was successfully uploaded" + "
\n");
 out.println(" ..." + "
\n");
 out.println(" Parsing the file" + "
\n");
 checkingFile(uploaded) ;
 }

 // Create and print the links to other servlets
 exitLinks();

 out.println("</body></html>");
 }// doPost ends here

 /**
 * Uploads the file to a temporary position
 * for further processing
 * @return If everything was done successfully
 * returns the name of the temporary file
 * @exception IOException In case a communication exception is thrown
 */
 private String uploadFile() throws IOException
 {
 // this Reader gets the file from the request
 BufferedReader bufReader = req.getReader();
 String str = null ;

 // those three lines are used to specify the correct
 // user directory because it is different in every server
 String userDir=System.getProperty("user.dir") ;
 int len = userDir.length() ;
 if(userDir.substring(len-3 ,len).equals("bin"))

System.setProperty("user.dir" , "C:\\jakarta-tomcat-4.1") ;

 // save the file in that temporary address in the server side
 tempFile = System.getProperty("user.dir")
 + File.separatorChar + "webapps"
 + File.separatorChar + "metadata"
 + File.separatorChar + "xml"
 + File.separatorChar + "temporary"
 + File.separatorChar + user.getUserID()

+"temp -1.xml" ;

233

 File outFile = new File(tempFile) ;
 FileOutputStream outFileStream = new

FileOutputStream(outFile) ;
 PrintWriter outStream = new

PrintWriter(outFileStream) ;

 int firstLine = 0;
 String xmlStartStr ="" ;
 String xmlEndStr ="" ;

 // get the parameters from the beginning of the stream
 for(int j=0; j<4; j++) desiredClass = bufReader.readLine() ; //

desired classification
 for(int j=0; j<4; j++) desiredCountry = bufReader.readLine() ;

 // relesable to countries
 for(int j=0; j<4; j++) fouo = bufReader.readLine() ;

 // For Official Use Only
 for(int j=0; j<4; j++) fiuo = bufReader.readLine() ;

 // For Internal Use Only

 // string containg the session number
 str = bufReader.readLine() ;

 // string containing the filename
 str = bufReader.readLine() ;

 // extract the name of the file
 filename = findFilename(str) ;

 if(!errorState.equals(""))
 {
 // go back in case the file has NOT an XML file extension
 // or an empty filename
 errorGoBack(errorState) ;
 }
 else
 {

 // find the beginning of the document in the first 20 lines
 for (int i=0; i<20 ; i++)
 {
 str = bufReader.readLine() ;

 if(!str.equals("") && s tr.length()>5) xmlStartStr =

str.substring(0,5) ;

 if(xmlStartStr.equals("<?xml"))
 {
 // the first line is found
 firstLine=i ;

234

 i=20 ; // exit the loop
 outStream.println(str) ; // write the first line
 } // if ending

 } // i loop

 // write the file to the temporary address
 for (int i=firstLine; i<MAXIMUM_FILE_LINES ; i++)
 {
 str = bufReader.readLine() ;

 // trying to detect the end of the file
 if(!str.equals("") && str.length()>10) xmlEndStr =

str.substring(0,10) ;
 if(!xmlEndStr.equals(" ----------"))
 {
 outStream.println(str) ;
 }
 else
 {
 i=MAXIMUM_FILE_LINES ;
 }

 } // i loop

 } // else ends here

 outStream.close();

 return tempFile ;

 } // uploadFile ends here

 /**
 * This method extracts the name of the file from
 * incoming stream, and checks if it is a valid XML filename
 * @param stringFile The complete name of the file
 * @return The name of the file found
 */
 private String findFilename(String stringFile)
 {
 String filename ;

 int len = stringFile.length() ;
 int pos =0 ;
 int flag = 0 ; // this flag is used in some browsers where they

get
 // only the file name and not the

whole path + filename

 ending = stringFile.substring((len-4) , (len-1)) ;

235

 boolean emptyFilename = true;

 // find the filename
 for (int i=(len-1); i>0; i--)
 {
 if(stringFile.charAt(i) == '"') flag = flag + 1 ;

 if(stringFile.charAt(i) == File.separatorChar || flag == 2)
 {
 pos = i+1 ;
 i=0 ;
 emptyFilename = false ;
 }
 }

 filename = stringFile.substring(pos , (len-1)) ;

 if(!ending.equals("xml")) errorState="IS NOT AN XML FILE" ;

 if(emptyFilename==true)
 {
 errorState="HAS NO NAME !!!!!" ;
 filename="" ;
 }

 return filename ;

 }

 /**
 * Defines several types of error conditions
 * depending on the specified error
 * @param error The error specifies the cause of the problem.
 * @return void.
 */
 private void errorGoBack(String error)
 {
 out.println("" + "*** ERROR ENCOUNTERED *** " +

"
\n");
 out.println("THE FILE YOU ENTERED --> " + filename + "
\n");
 out.println(error + "
\n");
 out.println("Please " + "" + "<a href='"
 + res.encodeURL("CreateFile") + "'>"
 + " go back and select another file"+ "" + "
\n");
 }

 /**
 * This method passes the file to the Echo24 class
 * which parses the file and returns a filetags object
 * This object and the userBean object are passed to

236

 * the security manager for the decision.
 * @param selFile the selected file to be parsed
 * @return void.
 */
 private void checkingFile(String selFile)
 {
 // initialize a new Echo24 object
 Echo24 echo24 = new Echo24() ;

 // create the FileTags object for that specific filename
 fileTags = echo24.parseFile(selFile) ;

 // if the file in not a valid XML file
 // then a null fileTags object is returned
 if(fileTags==null)
 {
 errorGoBack("IS NOT A VALID XML FILE. VALIDATE IT

WITH THE IC SECURITY MARKINGS") ;
 }

 // the file is parsed successfully
 else
 {
 // read file's sec attr
 fileSecAttr = fileTags.getSecAttributeValues() ;

 out.println("File was parsed successfully !!!! " + "
\n");
 out.println(" ..." + "
\n");
 out.println(" Comparing File's Security Metadata Labels " + "
 \n");

 // initialize a new security metadata manager
 // for that specific file and user
 manager = new SecMetadataManager(fileTags , user) ;

 // make the comparison through the compareTags method
 String status = manager.compareTags(desiredClass,

desiredCountry, fouo , fiuo) ;

 // "normal" case.
 if(status.equals("normal"))
 {
 out.println(" The whole process was successful");
 out.println("<a href='" +

 res.encodeURL("UpdateDb?desiredClass=" + desiredClass +
 "&filename=" + filename) +"'>" +
 "Confirm "+ "");
 out.println("to update the database and save the file to

the server ");
 }

237

 // "upgrade" or "degrade" case.
 else if(status.equals("upgrade") || status.equals("downgrade"))
 {
 // ask for confirmation
 askConfirm(status) ;
 }

 // there is a problem with the labels and
 // the process could not be accomplished
 else
 {
 out.println(" **** WARNING *** There is a problem

with the labels !!!!");
 out.println("

*** ");
 out.println(" Please validate your file with the IC

security metadata" + "<a href='" +
 res.encodeURL("CreateFile") +

"'>" + " and try again "+ "" + "
\n");
 }

 } // else fileTags is NOT null

 } // checkingFile method

 /**
 * In the cases where the status found is "upgrade" or "downgrade"
 * this method displays the appropriate message
 * @param status The results of the tag's comparison
 * @return void.
 */
 private void askConfirm(String status)
 {
 out.println(" .." + "
\n");
 out.println(" **** WARNING *** The file will be " + status +

"d *****" + "
\n");
 out.println(" **** The file is already marked as " +

fileSecAttr[0] + "
\n");
 out.println(" **** and you have asked to be saved as " +

desiredClass + "
\n");
 out.println(" .." + "
\n");

 out.println(" If you agree " + "<a href='" +

 res.encodeURL("UpdateDb?desiredClass=" + desiredClass +
 "&filename=" + filename) + "'>" +
 " confirm "+ "" + "
\n");

 out.println(" If you want to make a change " + "<a href='" +
 res.encodeURL("ImportToSave") + "'>"

+ " go back "+ "" + "
\n");

238

 }

 /**
 * Displays the available links to direct control
 * in another servlet, in case the u ser
 * wants to cancel this procedure
 * @return void.
 */
 private void exitLinks()
 {
 out.println("

\n");
 out.println("<a href='" + res.encodeURL("/metadata/html/login.htm")
 + "'>" + "login again as another user "+ "" +

" or "+ "
\n");
 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + " see again your options"+ "" +

"
\n");
 }

 /**
 * Prints the user's personal and Security data
 * retrieved from the database that contained
 * in the UserBean object
 * @return void.
 */
 private void printData()
 {
 out.println("<h3>" + " Personal Data " + "</h3>");
 out.println("Last Name :" + " " +

user.getLastName() + "
\n" +
 "First Name :" + " " +

user.getFirstName() + "
\n");

 out.println("" + " Security Attributes (presented here only for

demo)" + "
\n");

out.println(" Service Name :" + " " +
 user.getServiceName() + "
\n" +

" Service Position:" + " " +
 user.getServicePos() + "
\n" +
 " Service Classification:" + " "+
 user.getServiceClass() + "
\n" +
 " Country ID:" + " "

 +
 user.getCountryId() + "
\n"

);
 }

}// SaveFile class ends here

239

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */

package dbsection;

import dbsection.FileTags ;

/**
 * The class SecMetadataManager is responsible to compare the
 * received UserBean and FileTags objects and to produce
 * the necessary decision according to the policy
 * @author Panos
 */

public class SecMetadataManager
{

 // Data Members
 private FileTags fileTags ;
 private UserBean userBean ;
 private boolean approved ;

/**
 * The default constructor of the class
 * receives the passed objects and initializes
 * the variable of the decision as false
 * @param tags The FileTags object representing the
 * tags of a specific file
 * @param UserBean The UserBean object which will be compared
 */
 public SecMetadataManager(FileTags tags , UserBean user)
 {
 fileTags = tags ;
 userBean = user ;
 approved = false ;
 }

 /**
 * This method makes the decision
 * @return A boolean variable containing the decision
 */
 public boolean makeDecision()

240

 {
 String[] secAttribute =fileTags.getSecAttributes() ;
 String[] secAttributeValue =fileTags.getSecAttributeValues() ;

 if(secAttributeValue[0].equals(userBean.getServiceClass())) approved=true ;
 return approved ;

 } // makeDecision ends here

 /**
 * This method compares the tags of the file with those
 * of the user, and returns the result.
 * @return A String that can be upgrade, downgrade or normal
 */
 public String compareTags(String desiredClass , String desiredCountry ,
 String fouo , String fiuo)
 {
 String status = null ;
 String[] secAttribute =fileTags.getSecAttributes() ;
 String[] secAttributeValue =fileTags.getSecAttributeValues() ;

 int fileLevel = getClassLevel(secAttributeValue[0]) ;
 int userLevel = getClassLevel(userBean.getServiceClass()) ;
 int desiredLevel = getClassLevel(desiredClass) ;

 if(fileLevel==desiredLevel && userLevel<=fileLevel) status ="normal" ;
 if(fileLevel>desiredLevel) status ="upgrade" ;
 if(fileLevel<desiredLevel) status ="downgrade" ;

 return status ;
 } // compareTags ends here

 /**
 * This method converts a classification le vel to a number
 * to be easiest to compare
 * @return An integer representing the classification level
 */
 private int getClassLevel(String classification)
 {
 // convert user's classification to a number
 int level = 3 ;
 if(classification.equals("TS")) level = 0 ;
 if(classification.equals("S")) level = 1 ;
 if(classification.equals("C")) level = 2 ;

 return level ;
 }

}

241

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */

package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import java.util.Vector ;
import java.util.Enumeration ;
import java.sql.*;
import java.lang.* ;
import dbsection.*;

/**
 * The class ServerLogin defines a servlet that is responsible to authenticate
 * associated servers trying to login. Upon positive authentication,
 * all the names of the files that are available to that specific
 * server are sent for further processing.
 * @author Panos
 */

public class ServerLogin extends HttpServlet
{
 // Data members
 private final int DRIVER_ERROR = 1;
 private final int CONNECTION_ERROR = 2;
 private final int QUERY_ERROR = 3;
 private final int QUERY_ERROR_EXC = 5;
 private final int INVALID_USER = 4;

 private HttpServletRequest request;
 private HttpServletResponse response;
 private Connection connection;
 private PrintWriter out;

 private ServletOutputStream serverOut ;
 private ResultSet rs;
 private ResultSet rs2;
 private DBConnectionBean dbBean;

242

 private String curServiceName ="non";
 private String curServicePos ="non" ;
 private String curServiceClass ="non";
 private String curUserCountryId ="non";
 private int curUserId =0 ;

 public Exception dbe;
 public UserBean user ;
 public Vector avaFiles ;
 private Enumeration enum ;

 private String serverName ;
 private String serverPass ;
 private String filename ;
 private String server ;
 private String[] savedFilename = new String [10] ;

 /**
 * Processing user's POST request by simply pass ing
 * the control to the doGet.
 * @param request The client's request.
 * @param response The response to the client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In c ase of a I/O error encountered
 */
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Simply pass pass control to doGet()
 this.doGet(request, response);
 return;
 } // end of doPost

 /**
 * Processing user's GET request.
 * @param request the client request.
 * @param response the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOExc eption In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Initialization
 this.request = request;
 this.response = response;

 // get the session object from the previous servlet
 HttpSession session = request.getSession(true);

243

if(session.isNew()) System.out.println("^^^%%%%%%%%%%%%%% the session is

neww ");

 user = new UserBean() ;

 // get now the UserBean object from the session
 user = (UserBean) session.getAttribute("user");

 response.setContentType("text/html");

 // Get the login parameters from the request
 serverName = request.getParameter("serverID");
 serverPass = request.getParameter("password");
 filename = request.getParameter("filename");
 server = request.getParameter("server") ;

 // validate the server according to the username/passw
 validateServer(server, serverPass) ;

 } // end of doGet()

 /**
 * Authenticates a server with the given username & password
 * @param name The server's username.
 * @param pass The server's password.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a servlet error encountered
 */
 private void validateServer (String name, String pass)
 {

 String permission = "approved" ; // valid server
 String fileUrl = "nothing" ; // as a flag in the next

servlet
 Vector foundFiles = new Vector(20) ;
 avaFiles = new Vector();
 try
 {
 // the validation is done through the if/else condition
 // It can also be done with a query to the database
 if (name.equals("http://localhost:8080/metadata/servlet/"

)) avaFiles = findFiles("CIA");
 else if (name.equals("http://131.120.8.193:8080/metadata/servlet/"))

 avaFiles = findFiles("NPS");
 else avaFiles = findFiles("CIA"); // permission="denied" ;

 response.sendRedirect(name + "dbsection.FindUrl?permission="
 + permission +

"&fileUrl=" + fileUrl

244

 + "&filename="
+ filename

 + "&server=" + server);

 }
 catch(Exception e)
 {

 }

 } // validateServer

 /**
 * This method analyses the filename to extract
 * the date and the time, the file saved in the system
 * which actually represents the version of the file.
 * @param fullName The complete name of the file
 * @return An array of string containing the date and the time
 */
 private String[] findVersion(String fullName)
 {
 char letter ;
 int x =0 ;
 String[] d ate = {"", "", "", "", "", "", "" } ;

 for(int i=0; i<fullName.length() ; i++)
 {
 letter = fullName.charAt(i) ;

 if (letter != '~')
 {
 date[x] = date[x] + fullName.substring(i, i+1) ;
 }
 else if (letter == '~') x++ ;

 }

 return date ;

 }

 /**
 * Finds all the files that are releasable
 * to that specific server according to the
 * security authorizations contained in the database
 * @param serverCode The code of this server that recognized by the system
 * @return A Vector containing the releasable files
 * @exception Exception If an error found during the process
 */
 private Vector findFiles(String serverCode)
 {

245

 openConnection() ;

 // retrieve the available files according to the below criteria
 ResultSet rs4=dbBean.query(
 "SELECT * " +
 "FROM File " +
 "WHERE " + serverCode + " = '" + "Yes" + "'") ;

 try
 {
 while(rs4.next())
 {
 avaFiles.add(rs4.getString("UserServiceClass") +

rs4.getString("File")) ;
 }
 }
 catch(Exception e)
 {
 avaFiles = null ;
 }

 return avaFiles ;

 } // findFiles

 /**
 * Opens a connection with the database to retrieve
 * the available files of this user
 *
 * @return void
 */
 private void openConnection()
 {

 dbBean =

(DBConnectionBean)getServletContext().getAttribute("connectionBean");
 if(dbBean == null)
 {

 dbBean = new DBConnectionBean(); // for the connection module
 dbBean.setDriver("sun.jdbc.odbc.JdbcOdbcDriver");
 dbBean.setUrl("jdbc:odbc:UserDB");
 dbBean.setUser("panos");
 dbBean.setPassword("greek");

 // Load the driver
 if(!dbBean.isLoaded())
 {
System.out.println("############### driver error ############ = ") ;

 }

246

 }

 this.dbBean = dbBean;

 getServletContext().setAttribute("connectionBean", dbBean);
 }

} // end of ServerLogin class

247

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

** *
 */
package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.* ;

/**
 * The UpdateDb class gets an already parsed file,
 * updates the database and saves the file
 * in the "secure" server area.
 *
 */

public class UpdateDb extends HttpServlet
{

 // Data Members
 private UserBean newuser ;
 private PrintWriter out ;
 private HttpServletRequest req;
 private HttpServletResponse res;

 private int fieldId ;
 private String desiredClass ;
 private String tempFile ;
 private String filename ;
 private String finalFilename ;
 private DBConnectionBean dbBean ;

 /**
 * Processing user's GET request by simply passing
 * the control to the doPost.
 * @param request The client request.
 * @param response The response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)

248

 throws ServletException, IOException
 {
 // Simply pass pass control to doPost()
 this.doPost(request, response);
 return;
 } // end of doGet

 /**
 * Processing user's POST request.
 * @param request The client request.
 * @param response The response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {

 // Initialization
 this.req = req;
 this.res = res;

 // get the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 newuser = (UserBean) session.getAttribute("user");

 // Get the user selection from the request
 desiredClass = req.getParameter("desiredClass");
 filename = req.getParameter("filename");

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

 //Generates the title
 out.println("<html><head><title>");
 out.println("Update DataBase");
 out.println("</title></head>");

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 printData(); // Print the Personal and the security data
 out.println("" + "
\n");

249

 // save the file to the secure server area
 try
 {
 out.println(" Saving the file to the secure server area " +

"
\n");
 copyFile() ;
 out.println("Saving the file was successful" + "
\n");

 }
 catch(IOException e)
 {
 out.println(" ******* Error when copying the file

*************" + "
\n");
 out.println(" Please trying again later or call a system afdmin " +

"
\n");
 exitLinks() ;
 }

 // update the database
 out.println(" .." + "
\n");
 out.println(" Updating Database" + "
\n");

 openConnection() ;
 boolean successUpdate = updateDatabase() ;

 if(successUpdate)
 {
 out.println("...............updating database was successful" + "
\n");

 //update the available files for that user
 Vector oldAvaFiles = newuser.getAvaFiles() ;
 oldAvaFiles.add(finalFilename) ;
 newuser.setAvaFiles(oldAvaFiles) ;

 }
 else
 {
 out.println(" ******** Error while updating database

***********" + "
\n");
 out.println(" Please trying again later or call a system afdmin " +

"
\n");
 exitLinks() ;
 }

 exitLinks() ;

 out.println("</body></html>");
 }// doPost ends here

 /**

250

 * Updates the database with the new file's
 * data and metadata
 * @return A boolean variable is returned to verify
 * the success of the procedure
 */
 private boolean updateDatabase()
 {
 boolean success = false ;

 // Get a new primary key
 dbBean.setPrimaryKeyQuery("SELECT ID FROM File ORDER BY ID");
 int nextKey = dbBean.getPrimaryKey() ;

 if(nextKey != -1)
 {
 fieldId = dbBean.update(
 "INSERT INTO File " +
 "VALUES(" + nextKey + " ,'" + newuser.getServiceName() + "' ," +
 "'" + newuser.getServicePos() + "' ," +
 "'" + desiredClass + "' ," +
 "'" + newuser.getCountryId() + "' ," +
 "'" + "Yes" + "' ," +
 "'" + "Yes" + "' ," +
 "'" + "Yes" + "' ," +
 "'" + finalFilename + "')");

 success = true ;
 }
 else
 {
System.out.println(" ERROR getting the primary key ") ;
 }

 return success ;

 } // end of updateDatabase

 /**
 * Copies the file from the temporary server area to
 * the simulated permanent secure area
 * @return void.
 * @exception IOException In case of a I/O error encountered
 */
 private void copyFile() throws IOException
 {
 // create the final filename
 createFinalFilename() ;

 // the URI of the temporary file to read
 String tempFile = System.getProperty("user.dir")
 + "/webapps/metadata/xml/temporary/"

251

 + newuser.getUserID() +"temp -1.xml"
;

 // the URI to write the file
 String finalFile = createUserDirectory()
 + System.getProperty("file.separator")
 + finalFilename ;

 File inputFile = new File(tempFile);
 File outputFile = new File(finalFile);

 FileReader in = new FileReader(inputFile);
 FileWriter out = new FileWriter(outputFile);
 int c;

 while ((c = in.read()) != -1)
 out.write(c);

 in.close();
 out.close();
 }

 /**
 * Creates the final filename that the file will get in
 * order to be saved, by adding the date and the time
 * @return void.
 */
 private void createFinalFilename()
 {
 Calendar cal = new GregorianCalendar();
 int year = cal.get(Calendar.YEAR);
 int month = cal.get(Calendar.MONTH) + 1 ; // months start from 0
 int day = cal.get(Calendar.DAY_OF_MONTH);
 int hour = cal.get(Calendar.HOUR_OF_DAY);
 int minute = cal.get(Calendar.MINUTE);
 int second = cal.get(Calendar.SECOND);

 finalFilename = year + "~" + month + "~" + day + "~" +
 hour + "~" + minute + "~" + second + "~" +

filename ;

 }

 /**
 * Creates a new directory according to user's classification
 * in case there is not one yet
 * @return The newly created directory
 * @exception SecurityException In the case of the creation is not
 * allowed by the security manager
 */
 private String createUserDirectory() throws SecurityException

252

 {
 boolean userDirCreated ;

 File userDir = new File(System.getProperty("user.dir") +
 "/webapps/metadata/xml/" +

desiredClass) ;

 // if it is NOT already exists then create it
 if(!userDir.isDirectory()) userDirCreated = userDir.mkdir() ;

 return userDir.toString() ;

 }

 /**
 * Opens a connection with the database to retrieve
 * the available files of this user
 *
 * @return void
 */
 private void openConnection()
 {

 dbBean =

(DBConnectionBean)getServletContext().getAttribute("connectionBean");
 if(dbBean == null)
 {

 dbBean = new DBConnectionBean(); // for the connection module
 dbBean.setDriver("sun.jdbc .odbc.JdbcOdbcDriver");
 dbBean.setUrl("jdbc:odbc:UserDB");
 dbBean.setUser("paulo");
 dbBean.setPassword("silva");

 // Load the driver
 if(!dbBean.isLoaded())
 {
System.out.println("############### driver error ############ = ") ;

 }

 }

 this.dbBean = dbBean;

 getServletContext().setAttribute("connectionBean", dbBean);
 }

 /**
 * Prints the user's personal and Security data

253

 * retrieved from the database that contained
 * in the UserBean object
 * @return void.
 */
 private void printData()
 {
 out.println("<h3>" + " Personal Data " + "</h3>");
 out.println("Last Name :" + " " +
 newuser.getLastName() + "
\n"

 +
 "First Name :" + " <s trong>" +
 newuser.getFirstName() + "
\n");

 out.println("" + " Security Attributes (presented here only for

demo)" + "
\n");
 out.println(" Service Name :" + " "

 + newuser.getServiceName() + "
\n" +
" Service Position:" + " " +
newuser.getServicePos() + "
\n" +
" Service Classification:" + " "+
newuser.getServiceClass() + "
\n" +
" Country ID:" + " " +
newuser.getCountryId() + "
\n");
 }

 /**
 * Displays the available links to direct the control
 * in another servlet, in case the user
 * wants to cancel this procedure
 * @return void.
 */
 private void exitLinks()
 {
 out.println("

\n");

 out.println("<a href='" + res.encodeURL("/metadata/html/login.htm")
 + "'>" + "login again as another user "+ "" +

" or "+ "
\n");
 out.println("<a href='" + res.encodeURL("UserOptions")
 + "'>" + " see again your options"+ "" +

"
\n");

 }

}// UserSelection class ends here

254

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */

package dbsection ;

import java.util.* ;
import dbsectio n.*;

/**
 * This class defines a bean used to maintain user's
 * data during the session.
 * @author Panos
 */
public class UserBean
{

 // Data members
 private int userID;
 private String firstName;
 private String middleInitial;
 private String lastName;
 private String street;
 private String city;
 private String zip;
 private String state;
 private String phone;
 private String loginName;
 private String password;
 private String email;

 private String serviceName; // CIA, NSA, ARMY
 private String servicePos; // SUser, QUser, Admin, SuperAdmin
 private String serviceClass; // TS, SE, CL, UN
 private String countryId;
 private Vector avaFiles;

 /**
 * The default constructor initializes a new
 * object by calling the getReset() method
 */
 public UserBean()
 {

255

 // Initialize properties to a valid state
 getReset();
 }

 /**
 * Resets all fields by creating new empty objects
 * @return An empty String
 */
 public String getReset()
 {
 userID = -1;
 firstName = new String(" ");
 middleInitial = new String(" ");
 lastName = new String(" ");
 street = new String(" ");
 city = new String(" ");
 zip = new String(" ");
 state = new String(" ");
 phone = new String(" ");
 loginName = new String(" ");
 password = new String(" ");
 email = new String(" ");

 serviceName = new String(" ");
 servicePos = new String(" ");
 serviceClass = new String(" ");
 countryId = new String(" ");

 avaFiles = new Vector();

 return "";
 }

 /**
 * Gets user's ID
 * @return the user's ID
 */
 public int getUserID()
 {
 return userID;
 }

 /**
 * Sets user ID with a new value
 * @param newUserID the new userID
 * @return void
 */
 public void setUserID(int newUserID)
 {
 userID = newUserID;
 }

256

 /**
 * Gets user's first name
 * @return the user's first name
 */
 public String getFirstName()
 {
 return firstName;
 }

 /**
 * Sets user's first name with a new value
 * @param newFirstName The new first name
 * @return void
 */
 public void setFirstName(String newFirstName)
 {
 firstName = newFirstName;
 }

 /**
 * Gets user's middle initial
 * @return the user's middle initial
 */
 public String getMiddleInitial()
 {
 return middleInitial;
 }

 /**
 * Sets user's middle initial with a new value
 * @param newFirstName The new middle initial
 * @return void
 */
 public void setMiddleInitial(String newMiddleInitial)
 {
 middleInitial = newMiddleInit ial;
 }

 /**
 * Gets user's last name
 * @return the user's last name
 */
 public String getLastName()
 {
 return lastName;
 }

 /**
 * Sets user's last name with a new value
 * @param newFirstName The new last name

257

 * @return void
 */
 public void setLastName(String newLastName)
 {
 lastName = newLastName;
 }

 /**
 * Gets user's full name name (first + middle + last)
 * @return the user's full name
 */
 public String getFullName()
 {
 return (getFirstName() + " " + getMiddleInitial() + ". " + getLastName());
 }

 /**
 * Sets user's street name with a new value
 * @param newFirstName The new street name
 * @return void
 */
 public void setStreet(String newStreet)
 {
 street = newStreet;
 }

 /**
 * Sets user's city name with a new value
 * @param newFirstName The new city name
 * @return void
 */
 public void setCity(String newCity)
 {
 city = newCity;;
 }

 /**
 * Sets user's zip code with a new value
 * @param newFirstName The new zip code
 * @return void
 */
 public void setZip(String newZip)
 {
 zip = newZip;
 }

 /**
 * Sets user's state with a new value
 * @param newFirstName The new state
 * @return void
 */

258

 public void setState(String newState)
 {
 state = newState;
 }

 /**
 * Sets user's phone number with a new value
 * @param newFirstName The new phone number
 * @return void
 */
 public void setPhone(String newPhone)
 {
 phone = newPhone;
 }

 /**
 * Sets user's login name with a new value
 * @param newFirstName The new login name
 * @return void
 */
 public void setLoginName(String newLoginName)
 {
 loginName = newLoginName;
 }

 /**
 * Sets user's password with a new value
 * @param newFirstName The new password
 * @return void
 */
 public void setPassword(String newPassword)
 {
 password = newPassword;
 }

 /**
 * Sets user's email address with a new value
 * @param newFirstName The new email address
 * @return void
 */
 public void setEmail(String newEmail)
 {
 email = newEmail;
 }

 /**
 * Sets user's service name with a new value
 * @param newFirstName The new service name
 * @return void
 */
 public void setServiceName(String newServiceName)

259

 {
 serviceName = newServiceName;
 }

 /**
 * Sets user's service position with a new value
 * @param newFirstName The new service position
 * @return void
 */
 public void setServicePos(String newServicePos)
 {
 servicePos = newServicePos;
 }

 /**
 * Sets user's service classification with a new value
 * @param newFirstName The new service classification
 * @return void
 */
 public void setServiceClass(String newServiceClass)
 {
 serviceClass = newServiceClass;
 }

 /**
 * Sets user's country ID with a new value
 * @param newFirstName The new country ID
 * @return void
 */
 public void setCountryId(String newCountryId)
 {
 countryId = newCountryId;
 }

 /**
 * Sets user's available files with a new value
 * @param newFirstName The new available files
 * @return void
 */
 public void setAvaFiles(Vector newAvaFiles)
 {
 avaFiles = newAvaFiles;
 }

 /**
 * Gets user's street
 * @return the user's street
 */
 public String getStreet()
 {
 return street;

260

 }

 /**
 * Gets user's city name
 * @return the user's city name
 */
 public String getCity()
 {
 return city;
 }
 /**
 * Gets user's zip
 * @return the user's zip
 */
 public String getZip()
 {
 return zip;
 }

 /**
 * Gets user's state
 * @return the user's state
 */
 public String getState()
 {
 return state;
 }

 /**
 * Gets user's phone number
 * @return the user's phone number
 */
 public String getPhone()
 {
 return phone;
 }

 /**
 * Gets user's login name
 * @return the user's login name
 */
 public String getLoginName()
 {
 return loginName;
 }

 /**
 * Gets user's password
 * @return the user's password
 */
 public String getPassword()

261

 {
 return password;
 }

 /**
 * Gets user's email address
 * @return the user's email address
 */
 public String getEmail()
 {
 return email;
 }

 /**
 * Gets user's service name
 * @return the user's service name
 */
 public String getServiceName()
 {
 return serviceName ;
 }

 /**
 * Gets user's service position
 * @return the user's service position
 */
 public String getServicePos()
 {
 return servicePos ;
 }

 /**
 * Gets user's service classification
 * @return the user's service classification
 */
 public String getServiceClass()
 {
 return serviceClass ;
 }

 /**
 * Gets user's country ID
 * @return the user's country ID
 */
 public String getCountryId()
 {
 return countryId ;
 }

 /**
 * Gets user's available files stored in th e object

262

 * @return the user's available files
 */
 public Vector getAvaFiles()
 {
 return avaFiles;
 }

 /**
 * Gets user's personal data all in a String
 * @return the user's personal data
 */
 public String toString()
 {
 String str = new String("User Personal data is:\n");
 str += "UserID = \t" + userID + "\n";
 str += "First Name = \t" + firstName + "\n";
 str += "Mid initial= \t" + middleInitial + "\n";
 str += "Last name = \t" + lastName + "\n";
 str += "Street = \t" + street + "\n";
 str += "City = \t" + city + "\n";
 str += "Zip = \t" + zip + "\n";
 str += "State = \t" + state + " \n";
 str += "Phone = \t" + phone + " \n";
 str += "Login name = \t" + loginName + "\n";
 str += "Password = \t" + password + " \n";
 str += "Email = \t" + email + "\n";

 return str;
 }

 /**
 * Gets user's security data all in a String
 * @return the user's security data
 */
 public String secString()
 {
 String s tr = new String("User Security data is:\n");
 str += "UserID = \t" + userID + "\n";
 str += "Sevice Name = \t" + serviceName + " \n";
 str += "Service Position = \t" + servicePos + " \n";
 str += "Service Classif. = \t" + serviceClass + "\n";
 str += "Country Id = \t" + countryId + "\n";

 return str;
 }

} // End of UserBean class

263

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */

package dbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.* ;

/**
 * The class UserOptions creates a page displaying the
 * user's information (personal and security) and
 * the available options for that session. After
 * the user's selection pas s the control to the next
 * UserSelection servlet
 * @author Panos
 */
public class UserOptions extends HttpServlet
{

 // Data Members
 private UserBean newuser ;
 private Vector avaFiles ;
 private PrintWriter out ;

 /**
 * Processing user's GET request.
 * @param req the client request.
 * @param res the response to client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 // get the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 newuser = (UserBean) session.getAttribute("user");

264

 String mess = newuser.getFirstName() ;

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

 //Generates the title
 out.println("<html><head><title>");
 out.println("User Options");
 out.println("</title></head>");

 //Generates the body
 out.println("<body bgcolor=\"#fafca3\">");

 // Print the Personal and the security data
 printData();

 // Generates the form to select an option
 out.println("<form action='UserSelection' method='POST' > ");
 printOptions();
 out.println("</form>");

 out.println("<a href='" + res.encodeURL("/metadata/html/lo gin.htm")
 + "'>" + "login again as another user "+ "" +

"
\n");

 out.println("</body></html>");

 }// doGet ends here

 /**
 * Prints the user's personal and Security data
 * retrieved from the database that contained
 * in the UserBean object
 * @return void.
 */
 private void printData()
 {
 out.println("<h3>" + " Personal Data " + "</h3>");
 out.println("Last Name :" + " " +
 newuser.getLastName() + "
\n"

 +
 "First Name :" + " " +
 newuser.getFirstName() + "
\n");
 out.println("" + " Security Attributes (presented here only for

demo)" +
 "
\n");
 out.println(" Service Name :" + " <s trong>"

 +

265

 newuser.getServiceName() + "
\n"
 +

 " Service Position:" + " "
 +

 newuser.getServicePos() + "
\n"
 +

 " Service Classification:" + " "+
 newuser.getServiceClass() + "
\n"

 +
 " Country ID:" + " "

 +
 newuser.getCountryId() + "
\n"

);
 }

 /**
 * Creates a drop down list that presents
 * the user's available options.
 * @return void.
 */
 private void printOptions()
 {
 // insert a horizontal line
 out.println("<hr/>");

 out.println("Your options are ..." + "
\n");
 out.println(" <p><select size='1' name='FileMenu'> ");
 out.println(" <option>Import to Save</option> ");
 out.println(" <option>Open from Database</option> ");
 out.println(" <option>Import from Other Server</option> ");
 out.println(" <option>Logout </option> ");
 out.println(" </select></p> ");
 out.println(" <p><input type='submit' value='Submit' name='B1'>

</p>");

 }

}// UserOptions class ends here

266

/*

 * Master Thesis : Metadata Security Label Tags
 * Author : Major (HAF) Aposporis Panagiotis (Panos)
 * Advisor : Ted Lewis, Ph.D.
 * 2nd Advisor : Tim Levin
 * Date : December 2002

 */

package dbsection;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.* ;

/**
 * The UserSelection class is responsible to get the
 * user's selection from the main menu and to redirect
 * the control to the respective servlet for
 * further processing
 * @author Panos
 */
public class UserSelection extends HttpServlet
{

 // Data Members
 private HttpServletRequest req;
 private HttpServletResponse res;
 private UserBean freshuser ;
 private Vector avaFiles ;
 private PrintWriter out ;
 private String nextServlet ;
 private String FileMenu ;

 /**
 * Processing user's GET request by simply passing
 * the control to the doPost.
 * @param request The client's request.
 * @param response The response to the client.
 * @return void.
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // Simply pass pass control to doPost()

267

 this.doPost(request, response);
 return;
 } // end of doGet

 /**
 * Processing user's POST request.
 * @param req the client request.
 * @param res the response to client.
 * @return void .
 * @exception ServletException In case of a servlet error encountered
 * @exception IOException In case of a I/O error encountered
 */

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 // Initialization
 this.req = req;
 this.res = res;

 // get the session object from the previous servlet
 HttpSession session = req.getSession(true);

 // get now the UserBean object from the session
 freshuser = (UserBean) session.getAttribute("user");

 // Get the user selection from the request
 FileMenu = req.getParameter("FileMenu");

 // Sets the content type to html text
 res.setContentType("text/html");

 // Gets the PrintWriter object for sending HTML commands
 out = res.getWriter();

 //Generates the title
 out.println("<html><head><title>");
 out.println("User Options !!!!!");
 out.println("</title></head>");

 //Generates the body
 out.println("<body>");

 nextServlet ="/OpenFile" ;
 if (FileMenu.equals("Import to Save"))
 {
 nextServlet ="/ImportToSave" ;

 }
 else if (FileMenu.equals("Open from Database"))
 {

268

 nextServlet ="/OpenFile?selFile=" + "start" ;

 }
 else if (FileMenu.equals("Import from Other Server"))
 {
 nextServlet ="/ImportFile" ;

 }
 else if (FileMenu.equals("Logout"))
 {
 nextServlet ="/Logout" ;

 }
 try
 {
 continueSession() ;
 }
 catch(Exception e)
 {
 out.println("Sorry !!! The Exception " + e + " thrown " + "
 \n");
 }

 out.println("</body></html>");
 }// doPost ends here
 /**
 * Continue the session and pass
 * the control to the next servlet.
 * @return void.
 * @exception Exception. In case an invalid situation is encountered
 */
 private void continueSession() throws Exception
 {

 // Get the dispatcher
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(nextServlet);

 if (dispatcher == null)
 {
 // No dispatcher means the given file could not be found
 dispatcher = getServletContext().getRequestDispatcher("/UserOptions");
 }
 else
 {
 // Pass control to a different page
 dispatcher.forward(req, res);
 }
 } // end of continueSession()

}// UserSelection class ends here

269

LIST OF REFERENCES

[1] Abrams M.D., Jajodia S., and Podell H. J., Information Security: An Integrated

Collection of Essays, IEEE Computer Society Press.

[2] Brown Associates, Inc., Database Trade-offs for IMBM and Oracle: Availability,

Scalability, and Performance,” D.H. Associates, Inc., Sep 2001.

[3] Deitel, H. M., and Deitel, P. J., Java How to Program, 3rd Edition, Prentice Hall Inc.,

1999.

[4] Deitel, H. M., Deitel, P. J., and Nieto, T. R., Internet and The World Wide Web: How

to Program, 2nd Edition, 2002.

[5] Grohn, M. J., A Model of a Protected Data Management System, I.P. Sharp

Associates, Jun 1976.

[6] Hinke, T. H., and Schaefer M., Secure Data Management System, Technical Report,

System Development Corp., Nov 1975.

[7] Ibrahim Z., Mastering the Internet and HTML , 1st Edition, Prentice Hall Inc ., 2000.

[8] Intelligence Community, Intelink Management Office, Draft Release 0.8,

“Intelligence Community Metadata Standard for Publications, Data Element

Dictionary,” by the Intelligence Community Metadata Working Group, 6 May 2002.

[9] Intelligence Community, Intelink Management Office, Working Draft, Configuration

Management Guide, by the Intelligence Community Metadata Working Group, 27 Sep

2002.

[10] Kal Ahmet, and others, Professional XML Metadata, 1st Edition, Wrox Press Ltd,

2001.

[11] XML Complete, 1st Edition, SYBEX Inc, 2002.

[12] Kelly M., “Guidelines for Intelink Metadata Version 1.0,” paper presented at

Intelink Conference, Newport, RI, Jul 1997.

270

[13] Kurose J. F., and Ross K. W., Computer Networking, 1st Edition, Addison Wesley

Longman, Inc., 2001.

[14] Li Gong, “Inside Java 2 Platform Security: Architecture, API Design, and

Implementation,” Addison Wesley, 1999

[15] Martin B., “An Introduction to the Extensible Markup Language (XML),”

[http://www.personal.u-net.com/~sgml/xmlintro.htm]

[16] Marty Hall, Core Servlets and Java Server Pages, 1st Edition, Prentice Hall Inc.,

2000.

[17] Microsoft Corporation, “ .NET Framework Developer's Guide, .NET Framework

Security,” [http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cpguide/html/cpconnetframeworksecurity.asp], 2001.

[18] Microsoft Corporation, Project 42 “An Overview of Security in the .NET

Framework,” Dr. Demien Watkins, Jan 2002

[19] Microsoft Corporation, “XML Web Services Security,”

[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html

/xmlwssec.asp], Feb 2002

[20] Parnas, D. L., On the Criteria to Be Used in Decomposing Systems into Modules ,

Comm. ACM, Vol. 15, Dec 1972

[21] PASS Consulting Group, Version 2.0, “IBM DB2 UDB V7.2 and Oracle 9i, A

Technical Comparison,” Bloemen J., and others, Frankfurt, 06/09/2001.

[22] Raj Mohan, “XML Based Adaptive IPSec Policy Management in a Trust

management Context,” Master of Science Thesis, Department of Computer Science,

Naval Postgraduate School, Dec 2002.

[20] Schafer, M., Multilevel Data Management Security, Air Force Studies Board,

Committee on Multilevel Data Management Security, National Academy Press,

Washington, D.C., 1983

[23] Refsnes J. E., “Introduction to XML-XSL,”

 [http://www.xmlfiles.com/xsl/xsl_intro.asp]

271

[24] Science Application International Corporation, Intelligence Community Extensible

Markup Language (XML) Final Report, by Science Application International Corporation

XML Study Team, 3 Nov 1999.

[25] Science Application International Corporation, Intelligence Community Extensible

Markup Language (XML) Prototype System Design Document , by Science Application

International Corporation Applied Content Technologies Team under the directions of the

Office of Advanced Analytical Tools, Central Intelligence Agency, UNCLASSIFIED,

Revised 28 Aug 2002.

[26] Science Application International Corporation, Intelligence Community Extensible

Markup Language (XML) Prototype Overview, by Science Application International

Corporation XML Study Team, 6 Aug 1999.

[27] Science Application International Corporation, Intelligence Community Extensible

Markup Language (XML) Prototype Demonstration Scripts, by Science Application

International Corporation XML Study Team, 30 Sep 1999.

[28] Scott Oaks, “Java Security,” 2nd Edition, O'Reilly & Associates, Inc., May 2001

Siedschlag M., “Intelligence Community XML-DTD for Security Markings,” presented at

Intelink Conference, Sep 2000.

[29] Silberschatz A., Korth H. F., and Sudarshan S., Database System Concepts, 4th

Edition, McGraw-Hill Companies Inc., 2002

[30] Srinivas R. N., “Java Security Evolution and Concepts, Part 2,”

[http://www.javaworld.com/javaworld/jw -07-2000/jw -0728-security.html] , Jul 2000

[31] SOAP 1.1 Specifications, [http://www.w3.org/TR/SOAP/] W3C Note 08 May 2000.

[32] Sun Microsystems, Inc, Java 2 Standard Edition, V1.2.2 API Specification ,

[http://java.sun.com/products/jdk1.2/docs/api/], Sun Microsystems, Inc., 1999.

[33] Sun Microsystems, Inc, The JavaTM Web Services Tutorial,

[http://java.sun.com/webservices/docs/1.0/tutorial/] Sun Microsystems, Inc., 2002.

[34] Sun Microsystems, Inc, “ JavaTM Security,” [http://java.sun.com/security/] Jul 2002

272

[35] Wu C. Thomas, An Introduction to Object-Oriented Programming with Java, 2nd

Edition, McGraw-Hill Companies Inc., 2000.

[36] XML Specification, http://www.w3.org/TR/2000/REC-xml-20001006, Aug 2002

[37] XML Schema Specifications, http://www.w3.org/TR/xmlschema-0, Aug 2002

[38] XML Namespace Recommendation, http://www.w3.org/TR/REC-xml-names/

[39] XSLT Specifications, http://www.w3.org/TR/xslt, Aug 2002 RFC2396

[40] Zukowski J., “Exploring the Security Changes of the 1.4 Release of the Java TM 2

Platform Standard Edition (J2SE TM),” Apr 2002

273

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Commander, Naval Security Group Command

Naval Security Group Headquarters
Fort Meade, Maryland

4. Deborah M. Cooper

Intelligence Community CIO Office
Washington DC

5. Audrey Marsh

Intelligence Community CIO Office
Washington DC

6. William Dawson

Intelligence Community CIO Office
Washington DC

7. Richard Hale

Defense Information Systems Agency, Suite 400
Falls Church, Virginia

8. Cynthia E. Irvine

Computer Science Department, Code CS/IC
Naval Postgraduate School
Monterey, California

9. Timothy Levin

Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California

10. Ted Lewis

Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California

274

11. Capt Robert Simeral
Security Officer
Naval Postgraduate School
Monterey, California

12. Air Attaché

Embassy Of Greece,
Washington DC

13. Hellenic Air Force General Staff

Education Branch
Athens – Greece

